

400 108th Ave N.E
Suite 200
Bellevue, wa
28004

trs-80 fortran
user’s
® manual

trs-80 fortran
user’s
manual

Microsoft FORTRAN-80
for the Radio Shack TRS-80
Model | Computer

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement.

It is against the law to copy any of the Microsoft FORTRAN-80 package on cassette tape, disk or
any other medium for any purpose other than personal convenience.

Copyright Microsoft, 1980

TRS-80 is a trademark of Radio Shack
TRSDOS is a trademark of Radio Shack

A CONGMER PRODUCTS

Non Disclosure Agreement and Registration
TRS-80 FORTRAN

IMPORTANT: PLEASE COMPLETE THIS FORM IMMEDIATELY. In order to provide you
any updates or fixes, we must have your completed form on file. Failure to register and
sign the non-disclosure agreement voids any warranty expressed or implied.

Purchased from: Purchased by:

Company Name

Address Company

City & State Zip Address

Phone City & State Zip

Customer's hardware description (brands, configuration, amount of memoary,
etec.)s

Operating System: Version:

NOTE: THIS NON-DISCLOSURE AGREEMENT MUST BE SIGNED TO COMPLETE THIS
REGISTRATION FORM. The party below agrees that he/she is receiving a copy(s) of
Microsoft TRS-80 FORTRAN for use on a single computer only, as designated above. The
party agrees that all copies of TRS5-80 FORTRAN are owned by Microsoft, that all copies
will display Microsoft's copyright, that all copies will be strictly safequarded against
disclosure to or use by persons not authorized by Microsoft to use TRS-80 FORTRAN, and
that the location of all copies will be reported to Microsoft at Microsoft's request. The
party may make up to one additional copy of TRS-80 FORTRAN only, for back-up
purposes. The party agrees that unauthorized copying or disclosure will cause great
damage to Microsoft.

Signed Date

Title

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

trs-80 fortran
user’s
manual

Microsoft FORTRAN-80
for the Radio Shack TRS-80
Model | Computer

Microsoft Consumer Products
400 108th Ave. NE, Suite 200
Bellevue, WA 98004

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

October 15, 1980

ADDENDA
TRS-80 FORTRAN

General

TRSDOS Problems

There are two bugs in version 2.3 TRSDOS which may sometimes cause problems with
Microsoft's FORTRAN compiler or EDIT-80 text editor. These bugs should be corrected in
future versions of TRSDOS, but until those corrections occur, use the following methods to
circumvent the problems.

1.

Files with record lengths of less than 256 bytes will sometimes not be accessed
properly. The usual symptoms are "End of File" or "Record Number Out of Range"
errors, or occasionally you may not be able to access the last sector of the file.

If you encounter this problem while running a FORTRAN program which accesses
disk files, increase the record length of the file (or files) to 256.

The TRSDOS "COPY" utility will not correctly copy files created with EDIT-80.

This problem may be easily avoided by using EDIT-80 itself to copy the files. For

example, if you wish to copy TEMP/FOR from drive 0 to drive 1, do the following:
EDIT TEMP/FOR:0

*£ TEMP/FOR:1

NOTE: Do not ever switch diskettes while editing a file. The editor creates the new
file by reading from the old one.

Regarding TRSDOS

Note that TRSDOS was not written by Microsoft. Any questions regarding the TRSDQOS
operating system or utilities should be addressed to Radio Shack. Inquiries regarding
TRSDOS updates should also be addressed to Radio Shack.

Swapping Diskettes

The only safe times to swap diskettes are:

1.

2.

3.

4,

Before booting TRSDOS
When currently at TRSDOS command level ("DOS READY" prompt)
When currently at command level in F80 or L80 ("*" prompt)

When EDIT prompts for a filename ("FILE:")

Swapping diskettes at other times may cause lost data and/or lost files.

In particular, it is NOT safe to switch diskettes during an EDIT session after the file name
has been specified.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft
TRS-80 FORTRAN
User”s Manual

CONTENTS

SECTION Introduction . .« .« +« + + o o &

1
1.1 Distribution Disks e . e
1.2 Program Development Steps . .
1.3 Note on TRS-80 FORTRAN Manuals

SECTION 2 TRS-80 FORTRAN Compiler
Running the Compiler
Command Format e .

1

2 .

3 Input/Output Device Names . . .
4 FORTRAN Compiler Error Messages

SECTION 3 TRS-80 FORTRAN Disk Files . .

3.1 Default Disk Filenames
3.2 CALL OPEN . . « &« « « o o « o«
SECTION 4 LINK-80 Linking Loader . .

Running LINK-80
LINK-80 Command Format
More Commands and Switches . .
The -N Switch
The -R Switch
Special Switches
System Library Searches .
LINK-80 Error Messages

. . @ . [] .
. .
W -

E= = - - -
L]

Mk WwwWwwwMN -
L]

SECTION 5 Executing Fortran Programs . . .

5.1 FORTRAN Runtime Error Messages

APPENDIX A Single Drive System
APPENDIX B Format of Link Compatible Object

APPENDIX C FORTRAN Programs in ROM . . .

15

15
16
20
21

23

23
23

25

25
25
26
26
27
27
28
29

31
31

33
35

38

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

TRS-80 FORTRAN User”s Manual Page 5
SECTION 1

Introduction

The purpose of this TRS-80 FORTRAN User”s Manual is to give
you practical information about getting a FORTRAN-80 program

up and running on your TRS-80 computer. All the steps
necessary to use FORTRAN-80 successfully -- compiling,
loading, executing, etc. -- are described in the following
pages.

1.1 Distribution Disks

The FORTRAN-80 diskettes you receive from Microsoft
(labelled FORTRAN 1 and FORTRAN 2) contain the
following files:

FORTRAN 1:

FORTRAN-80 Compiler
TRSDOS Operating System

FORTRAN 2:

FORLIB/REL FORTRAN-80 Subroutine Library
LINK-80 Linking Loader

EDIT-80 Text Editor

TRSDOS Operating System

The distribution disks are write-protected.
We recommend that you immediately make back-up

copies of both diskettes using the TRSDOS Backup
utility, which is on both diskettes.

TRS-80 FORTRAN User”“s Manual Page 6

Program Development Steps

The three major steps 1in developing a FORTRAN
program are:

Compiling the program
Loading the program
Executing the program

These steps are described further 1in Sections 2
through 5 of this manual. However, to give you an
overall view of the FORTRAN-80 system and an idea
of a typical program development session, the
following sample session is provided. We recommend
that you perform all the steps in this sample
program development session. It contains tips that
will help you make the most efficient use of your
FORTRAN-80 software.

The sample session assumes that your system has at
least two disk drives. Typically, you will have
one of the Microsoft distribution diskettes in one
drive and your "work" diskette in the other. It
doesn”“t matter which diskette you put in "drive 0"
or "drive 1." We use these designations in the
Sample Session for convenience only.

If you have a single-drive system, you can still
use TRS-80 FORTRAN, but you must do a lot of
disk-swapping. Follow the sample session given in
Appendix A for single-drive systems.

A FORTRAN program is provided in Figure 1 for use
during the sample session. Before beginning STEP
1, you should be at TRSDOS command level.

SAMPLE SESSION

STEP 1l: Place the FORTRAN 2 diskette in drive 1
and a formatted "work" diskette in drive
0. Enter the command:

EDIT

This loads the EDIT-80 text editor.
EDIT-80 will respond with

FILE:

If you are using the program in Figure 1,
type the filename TEMP/FOR followed by the
<break> key. If you are using your own
FORTRAN program, type any legal TRSDOS
filename. Always follow the filename with

TRS-80 FORTRAN User”s Manual Page 7

STEP 2:

STEP 3:

<break> when creating a new file and with
<enter> when reading in an existing file.

After EDIT-80 prints the message:

Creating

Version X.X

Copyright 1977,78 (c) by Microsoft
Created: xxxx

XXXxX Bytes free
*

enter the command:
I

EDIT-80 will print 00100, which 1is the
first line number, followed by a tab. The
cursor is now in "column 1" and you are
ready to begin entering your FORTRAN
program.

Start entering the FORTRAN program as
listed in PFigure 1 (or enter your own
FORTRAN program). EDIT-80 will type the
next line number each time you <enter> a
line.

While you“re typing in your program, all
of EDIT-80"s editing capabilities are
available to vyou. Read through the
EDIT-80 User”s Guide. You“ll see how easy
it is to insert and delete 1lines, modify
text, and search for text. This is a good
chance to experiment with EDIT-80.

When writing any FORTRAN program for your
TRS-80, use the Microsoft FORTRAN-80
Reference Manual to determine the correct
syntax and usage of all FORTRAN
statements.

When you are finished typing in the
program, type a <break> after the next
available line number to return to EDIT-80
command 1level. To exit the editor, enter
the command:

E

Now there 1is a FORTRAN program called
TEMP/FOR on the work disk. This program
is the source file.

TRS-80 FORTRAN User”s Manual Page 8

STEP 4:

STEP 5:

STEP 6:

Syntax check.

Before proceeding, it is a good idea to
check the program for syntax errors.
Removing syntax errors now eliminates a
possible recompilation later. To perform
the syntax check on the source file called
TEMP/FOR, place the diskette 1labelled
FORTRAN 1 in drive 1 and type:

F80’=TEMP

This command runs the FORTRAN compiler and
compiles the source file without producing
an object or listing file (more on obiject
and 1listing files in STEP 5). If there
are errors, run EDIT-80 again (STEP 1) and
correct them. The FORTRAN compiler error
messages are listed in Section 2.4.

Compile the source file.

When the syntax check no longer generates
errors, you are ready to compile the
source file. To compile the source file
called TEMP/FOR and produce an object and
listing file, type the following:

F80 TEMP, TEMP=TEMP

This creates a relocatable object file
called TEMP/REL and a listing file called
TEMP/LST on the disk. REL and LST are the
default extensions supplied by the
compiler. The object file contains the
machine-readable code generated by the
compiler. The listing file contains the
FORTRAN source program statements and the
machine language generated by each
statement. See Figure 2 for a copy of the
listing file generated by TEMP.

Load and execute the program.

To load the program into memory and
execute it, put FORTRAN 2 in drive 1 and
type:

L80 TEMP-G

This command loads TEMP/REL, links it with
routines in FORLIB, and causes the program
image in memory to be executed. Your
program output should appear on the screen
as shown in Figure 3.

During execution of your program, you may
get a runtime error. Runtime errors are

TRS-80 FORTRAN User”s Manual Page 9

STEP 7:

listed in Section 5.1. If you get an
error at runtime, it will be necessary to
edit the source file (Step 1) to correct
the error.

Save the object file.

Once your program executes without errors,
you will want to save the executable file
on disk. To do this, type:

L80 TEMP-N,TEMP-E

This command writes a copy of the
executable object file to your work
diskette under the name TEMP/CMD, and then
exits to TRSDOS. The executable file may
now be run by entering the command:

TEMP
at TRSDOS command level. For more

information on LINK-80, see Section 4 of
this manual.

TRS-80 FORTRAN User”s Manual Page 10

FIGURE 1 FORTRAN SOURCE FILE
g |sTareen Z FORTRAN STATEMENT
g‘*‘ 2 3 4 516 |7 8 9 10 11V 12 13 14 15 1& 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 44 47 48 49 30 35}
b ol LT 1 1 T i .
cl cowvaarlfAHkENHEIT;To mEﬂTfaEhDgl BERRREEE
L [iwiTeleer] I HEENRRERE HEEE BN ij:;
P PN |11 T i T ! ! ! T i :
o ““:’iTE\<LgJS)1 i ; i “ ; L}A Pl | *l I ! { EL I | [:
[FormAT (334 FRNRENHE | T CENT|GAAOE)
Do 2o F=2o, 65,5
C=5.|/q9 . % ([F-'32)
T T T T ™ -
[uleli[rlelclsT, TroD T, Tel TT T[T NENERNRERRN RN
o I]] 1 T 17 1] 1 |
Lol | | |Flomlari¢[1ia]x], [Tisl, [1]1]x],[Fle!. 3]) HEE L
T T . . i — - — — — . | i
QIOJ ' ClONT '!NluEl ! !1 | | 1 L | 11 \ i l | | | 1 b i
END || U BN |
T ! | T 1] !
; Lo .
\ ? ! b
R 1 ’ f T T 1 1] ; T 1] .
RENNEREREEE B HEERERERR RN RN
EENEERREREE R EINERNERERENEREEE
i i] ‘] T | i | | f i i 1 i ! [!) .,,,'_
EENEEEER NS EENERENEENERNRERERRRNRENENREREEERS
.
T 1 T T 7 T T 1 1 T
! B L L L R HENEE . g
* | | HENERERERENEER
1 P . | | (o
L L L BEEE | | EIERERERREEERENREE
2 3 4 5)16|7 8 % 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 35 40 41 42 43 44 45 46 47 48 49 50 51

TRS-80 FORTRAN User's Manual Page 11

FIGURE 2 LISTING FILE TEMP/LST

1. FORTRAM-26 YER. Z=. 2 COPYRIGHT 1378 <(C)> BY MICROSOFT
2. BYTES: 26393

2. CREATED: A1S-FEB-73

4. Ge108 c CONYERT FAHRENHEIT TO CENTIGRADE
. a6azaoa INTEGER F

5. Qaezga WRITE<S., 5S>

. eekskskek agaa LD BC. #¥L

8. kol eaaz” JP $INIT

D ek aaas - LD DE. SL

18, sechokkok BEas LD HL. C as 8e]
11, cekekeok gaac” CALL FW2

2. 884006 S FORMATCZZ=EH FAHRENHEIT CENTIGRRADE?
I, kkekokok Be9aF - CALL ¥MND
14, Qgases DO 28 F=28, 65,5
15 ©a€eog C=5. /9. ®(F=-32>

16, etk aa12” LD HL. agi4
A7, ek ae15” LD ¢FY, HL
18. 687648 WRITE<S. 18>F.C
19, skkekkeok 8ei1s” LD HL., <F>
20, kdekdok 8eiB”- LD DE. FFE@
2. ckedeckkok B81E”~ RADD HL. DE

22, Ak a8aiF - LD {T:8088880>. HL

23, ARk o2z~ LD HL. C (=]%) aa 28 831
24, sekkk %1% i i CALL FL1

25, kekdekdk Bazs” LD HL. C Ba 88 18 =1 |
26, Rk aaze” CALL DB

27, koo Ba2E“ LD HL. <T:0aao8a>

28, bk a6ez=21~ CALL $MA

29, ek 2834~ LD HL. C

28, kkdekk Bazvy -’ cALL $T1

21, ek Ba3A” LD DE. 16L

32, kkokkek g8zD~ LD HL. C as aa]

23 ekl aa4a-” CALL FW2

34, 98880 16 FORMAT (12X, 12, 11X, F6&. 2>

Z8. kel gad4=z"” LD DE. F

6. kkokokek B946” LD HL. C g1 0a]

ET. Adekekok 8849~ LD A, 82

28, kkokdek as4B~” CALL $Ia

4. SR T T T BB84E “ LD DE. C

48, kbR 2851~ LD HL.LC a4 aa 1]

G, kR BasS4 - LD A, 82

42, kel pase&e” CALL $I1

G432 keokkokk ass9s” CALL FND

44 QO2@0 2a CONTINUE

45. @16068 END

-continued-

TRS=80 FORTRAN User's Manual

Page
e aasc LD HL. <F2>
R D e aasF - LD DE., BEasS
g e [[o ADD HL. DE
e e Basx= " LD A, 41
B T ges85 " SUB L
spespepe e ke anes” LD A, 86
s e ool aees” sBC H
ool BBES" JP F'_; 3915'
esderie e aa&C” CHLL FEX
ek B8sF ~ g186
Aokt aayv1” Saa
ek %17 o BR0a268=2
s h e aaryy” ooee1634
FPROGRAM UNIT LENGTH=GBYE (123> BYTES
DATA AREAR LENGTH=8848 (54> BYTES
SUBROUTIMES REFERENCED:
£I1 $Ia FINIT
FWZ FND L1
$DBE F+MA T4
FEX
YARIABLES:
F gaaal" C aaz3" T : @e6a
LABELS:
5L ga6E - SL aaaz" 2aL

14 aazF"

TRS-80 FORTRAN User”s Manual Page 13

FIGURE 3 TEMP/FOR PROGRAM OUTPUT

FAHRENHEIT CENTIGRADE
20 -6.667
25 -3.889
30 -1.1]1
35 1.667
40 4.444
45 7.222
50 10.000
55 12.778
60 15.556

65 18.333

TRS-80 FORTRAN User”s Manual Page 14

1.3 Note on TRS-80 FORTRAN Manuals

The FORTRAN-80 Reference Manual is strictly a
reference for the syntax and semantics of the
TRS-80 FORTRAN language. It is not intended as a
tutorial on FORTRAN programming. If you are new to
FORTRAN and need help 1learning the language, we
suggest:

1. "FORTRAN IV, A Self-Teaching Guide" by Jehosua
Friedmann, Philip Greenberg, and Alan M.
Hoffberg (Wiley, 1975)

2. "Guide to FORTRAN-IV Programming" by Daniel
McCracken (Wiley, 1965)

3. "Ten Statement FORTRAN Plus FORTRAN IV" by
Michael Kennedy and Martin B. Solomon
(Prentice-Hall, 1975, Second Edition)

4. "FORTRAN" by Kenneth P. Seidel (Goodyear,
1972)

TRS-80 FORTRAN User”s Manual Page 15

If vyou
familiar
Now let”

2.1

SECTION 2

TRS-80 FORTRAN Compiler

followed the sample session, you are becoming
with the software in your TRS-80 FORTRAN package.
s look specifically at the TRS-80 FORTRAN compiler.

Running the Compiler

When you give TRSDOS the command
F80

(FORTRAN 1 must be in the disk drive), you are
running the TRS-80 FORTRAN compiler. The FORTRAN
compiler takes a FORTRAN source program and
compiles it to generate a relocatable object
program that consists of a series of machine
language instructions and calls to the FORTRAN
library. If directed, the compiler also creates a
listing file consisting of your FORTRAN statements
and the machine code generated from them. This
listing file, unlike the REL (relocatable object)
program, can be 1listed and printed from TRSDOS
command level.

When the compiler is ready to accept commands, it
prompts the user with an asterisk. To exit the
compiler, use the <break> key.

A command may also be typed on the same line as the
invocation. This is called a "command line." We
did this in the Sample Session when we typed the
command line:

F80 =TEMP

After executing a command 1line, the compiler
automatically exits to the operating system.

TRS-80 FORTRAN User”s Manual

Command Format

A compiler command conveys the name of

the

Page 16

source

file you want to compile, and what options you want
to use. Here is the format for a compiler

(square brackets indicate optional):

command

[object filename] [,listing filename]=source filename[-switch

NOTE

All filenames must be in TRSDOS
format:

filename[/ext] [.password] [:drive#].
are using the compiler”’s
extensions, it is not necessary to
an extension in a compiler command.

filename

If
def
spe

Let”s 1look individually at each part

compiler command:

l. Object filename

you
ault
cify

of the

To create a relocatable object file, this part
It is simply
the name that you want to call the object file.
The default extension for the object filename

of the command must be included.

is /REL.

2. Listing filename

To create a listing file, this part
command must be included. It is simply the
name that you want to call the 1listing file.
The default extension for the listing file is
/LST. The listing filename is always

by a comma in the compiler command.

3. Source filename

of the

preceded

A compiler command must always include a source
filename -- that is how the compiler "knows"

what to compile. It is simply the

nam

e of a

FORTRAN program you have saved on disk. The
default extension for a FORTRAN source filename

is /FOR. The source filename
preceded by an equal sign in
command.

a

is

always
compiler

TRS-80 FORTRAN User”s Manual

Examples (asterisk is

* ,=TEST

*TEST, TEST=TEST

* , TEST.PASS=TEST.PASS

*TESTOBJ=TEST

Page 17

typed by F80):

Compile the program
without creating
file or listing file. This
is a fast way to check a
program for syntax errors.

TEST/FOR

an object

Compile the program TEST/FOR.
Create a relocatable object
file called TEST/REL and a
listing file called TEST/LST.

Compile the program TEST
/FOR. PASS and create a
listing file called

TEST/LST.PASS (No object file
created.) Note the comma
preceding TEST.PASS.

Compile the program TEST/FOR
and create an object file
called TESTOBJ/REL. (No
listing file created.).

TRS-80 FORTRAN User”s Manual Page 18

4.

Switch

A switch on the end of a command specifies a
special action to be taken during compilation.
Switches are always preceded by a dash (-).
More than one switch may be used in the same
command. The available switches are:

Switch Action
0 Print all 1listing addresses in
octal.
H Print all 1listing addresses in

hexadecimal (default condition).

N Do not list the object code that is
generated. List only the FORTRAN
source code.

P Each -P allocates an extra 100
bytes of stack space for use during
compilation. Use -P if stack
overflow errors occur during

compilation. Otherwise not needed.

M Specifies to the compiler that the
generated c¢ode should be in a form
which can be 1loaded into ROMs.
(See also Appendix C.) When a -M is
specified, the generated code will
differ from normal in the following
ways:

l. FORMATs will be placed in the
program area, with a "JMpP"
around them.

2. Parameter blocks (for sub-
program calls with more than 3
parameters) will be initialized
at runtime, rather than being
initialized by the loader.

TRS-80 FORTRAN User”s Manual

Examples:

*CT- ME r CT . ME=CT. ME"O

*CT,CT=CT-N

*MAX10=MAX10-P-P

Page 19

Compile CT/FOR.ME. Create a
listing file called CT/LST.ME
and an object file called
CT/REL.ME. The addresses in
the listing file will be in
octal.

Compile the program CT/FOR.
Create an object file called
CT/REL and a 1listing file
called CT/LST. The listing
file will contain only
FORTRAN source statements,

not generated object code.

Compile the program MAX10/FOR

and create an object file
called MAX10/REL. The
compiler is allocated 200

extra bytes of stack space.

TRS-80 FORTRAN User”s Manual Page 20

2.3 Input /Output Device Names

In the commands discussed so far, it 1is assumed
that all files are read from and written to the
disk. To use an I/O device other than the disk,
specify the device name in place of the filename in
the compiler command.

The device names supplied by TRSDOS are:

*KI Keyboard Input
*DO Display Output
*PR Printer Output

(*DO and *PR are available only with TRSDOS Version
2.2 or later.)

Examples (first asterisk is typed by FORTRAN-80):

*TEST, *PR=TEST Compile the program TEST/FOR,
Create . an object file called
TEST/REL and output the listing
file, TEST/LST, at the printer.

*TEST, *DO=TEST-N Compile the program TEST/FOR.
Create an object file <called
TEST/REL and output the 1listing
file, TEST/LST at the wvideo
display. The 1listing file will
only contain the FORTRAN source
statements, not the generated
object code.

*=*K] *KI is used only if vyou want ¢to
input a source file from the
keyboard. This command compiles
the source file read from the
keyboard without creating a REL or
LST file.

r *DO=*KI This command puts the compiler in
an interactive mode. Any FORTRAN
statement typed at the keyboard
will be displayed on the video
display followed by the generated
machine code. This can be very
useful for finding errors in
statement formats.

REMEMBER: In FORTRAN I/O statements (READ and
WRITE), LUNs 1, 3, 4, and 5 default to the
console/keyboard (*DO/*KI), LUN 2 defaults to the
line printer (*PR), and LUNs 6-10 default to the
disk drive.

TRS-80 FORTRAN User”s Manual Page 21

2.4 FORTRAN Compiler Error Messages

Two classes of diagnostic error messages may be
produced during compilation of a FORTRAN program:
Warnings and Fatal Errors. When a Warning is
issued, compilation continues with the next item on
the source line. When a Fatal Error is found, the
compiler ignores the rest of the logical line,
including any continuation lines. Warning messages
are preceded by percent signs (%), and Fatal Errors
by question marks (?). The editor line number, if
any, or the physical line number is printed next.
It is followed by the error code or error message.

Example:

?Line 25: Mismatched Parentheses

$Line 1l6: Missing Integer Variable

When either type of error occurs, the program
should be changed so that it compiles without
errors. No guarantee is made that a program that
compiles with errors will execute sensibly.

Fatal Errors:

Error
Number Message

100 Illegal Statement Number

101 Statement Unrecognizable or Misspelled
102 Illegal Statement Completion

103 Illegal DO Nesting

104 Illegal Data Constant

105 Missing Name

106 Illegal Procedure Name

107 Invalid DATA Constant or Repeat Factor
108 Incorrect Number of DATA Constants
109 Incorrect Integer Constant

110 Invalid Statement Number

111 Not a Variable Name

112 Illegal Logical Form Operator

113 Out of Memory

114 Literal String Too Large

115 Invalid Data List Element in I/O
116 Unbalanced DO Nest

117 Identifier Too Long

118 Illegal Operator

119 Mismatched Parenthesis

120 Consecutive Operators

121 Improper Subscript Syntax

122 Illegal Integer Quantity

123 Illegal Hollerith Construction

124 Backwards DO reference

TRS-80 FORTRAN User”s Manual Page 22

125 Illegal Statement Function Name

126 Illegal Character for Syntax

127 Statement Out of Sequence

128 Missing Integer Quantity

129 Invalid Logical Operator

130 Illegal Item Following INTEGER or REAL or
LOGICAL

131 Premature End Of File on Input Device

132 Illegal Mixed Mode Operation

133 Function Call with No Parameters

134 Stack Overflow

135 Illegal Statement Following Logical IF

Warnings:

0 Duplicate Statement Label

1 Illegal DO Termination

2 Block Name = Procedure Name

3 Array Name Misuse

4 COMMON Name Usage

5 Wrong Number of Subscripts

6 Array Multiply EQUIVALENCEd within a Group
7 Multiple EQUIVALENCE of COMMON

8 COMMON Base Lowered

9 Non-COMMON Variable in BLOCK DATA
10 Empty List for Unformatted WRITE

11 Non-Integer Expression

12 Operand Mode Not Compatible with Operator
13 Mixing of Operand Modes Not Allowed
14 Missing Integer Variable

15 Missing Statement Number on FORMAT
16 Zero Repeat Factor

17 Zero Format Value

18 Format Nest Too Deep

19 Statement Number Not FORMAT Associated
20 Invalid Statement Number Usage

21 No Path to this Statement

22 Missing Do Termination

23 Code Output in BLOCK DATA

24 Undefined Labels Have Occurred

25 RETURN in a Main Program

26 STATUS Error on READ

27 Invalid Operand Usage

28 Function with no Parameter

29 Hex Constant Overflow

30 Division by Zero

32 Array Name Expected

33 Illegal Argument to ENCODE/DECODE

TRS-80 FORTRAN User”s Manual Page 23

SECTION 3

TRS-80 FORTRAN Disk Files

SEE ALSO FORTRAN-80 REFERENCE MANUAL, SECTION 8.3.

3.1

3.2

Default Disk Filenames

TRS-80 FORTRAN may access either random or
sequential disk files. When a disk file is opened
by a READ or WRITE statement, the file is given a
default filename that depends on the LUN:

LUN Default Filename
6 FORT06/DAT
7 FORTO07/DAT
8 FORTO08/DAT
9 FORT09/DAT
10 FORT10/DAT

These default filenames are assigned only when the
user does not explicitly call the OPEN subroutine
and specify a name for the file (see below).

CALL OPEN

To explicitly OPEN a disk file with a filename that
you specify, do a "CALL OPEN." OPEN is the
subroutine that opens a disk file for input/output
(READing and WRITing) . (See the FORTRAN-80
Reference Manual, Section 8.3.2.) The format of an
OPEN call is:

CALL OPEN (LUN, Filename, Reclen)
where:

LUN = a Logical Unit Number to be associated with
the file (must be an Integer constant or Integer
variable with a value between 1 and 10).

Filename = an ASCII name which TRSDOS will
associate with the file. The Filename should be a
Hollerith or Literal constant, or a variable or
array name where the variable or array contains the
ASCII name. The Filename should be 1in the form
normally required by TRSDOS,

filename/ext.password:drive#

and it should be terminated with a non-alpha

TRS-80 FORTRAN User”s Manual Page 24

character, preferably a blank.

Reclen = The number of bytes you wish to specify
(up to 256) as the record length. Reclen must be

an Integer constant or Integer variable. If zero
is supplied for Reclen, the record length will be
256 bytes.

The following are examples of valid OPEN calls:
CALL OPEN (6, “TIME/DAT.JULY:1 “,256)
CALL OPEN (7, COUNT/NUM “,200)

CALL OPEN (1, TESTQ/MIN:2 “,100)

TRS-80 FORTRAN User”s Manual Page 25

SECTION 4

LINK-80 Linking Loader

As demonstrated in the Sample Session, compiled FORTRAN
programs are loaded into memory, linked, and executed using
the LINK-80 linking loader. The linking loader converts the
compiled relocatable object version of your program into an
absolute version that 1is executable. It automatically
combines the required portions of the FORTRAN runtime
library with your object program. The loader is also used
to link one or more FORTRAN subprograms together with a main
program.

A file containing the executable memory image produced by
LINK-80 can be saved on disk and run at a later time.

4.1 RUNNING LINK-80

Place the diskette containing LINK-80 in disk drive
1. At TRSDOS command level, enter:

L8O

This loads LINK-80, which returns an asterisk (%)
to indicate command level. The loader exits back
to TRSDOS if a <break> is typed after the asterisk.
(The loader also exits back to TRSDOS after a -E
switch or -G switch is executed. More on these
switches later.)

4,2 LINK-80 COMMAND FORMAT

A command to LINK-80 is made up of the filename(s)
of the file(s) to be loaded. For example, to load
the compiled program TEMP/REL, put the diskette
containing TEMP/REL into drive 0 and (at LINK-80
command level) enter:

TEMP

(It is not necessary to type the default extension
/REL.) This loads the program but does not run it.
To run TEMP, enter

-G

This is the "go" or execute switch. LINK-80 prints
two numbers and a BEGIN EXECUTION message. LINK-80
always returns to TRSDOS after a -G switch has been
executed.

TRS-80 FORTRAN User”s Manual Page 26

As you probably have guessed, it is not necessary
to perform the above operations with separate
commands. It is possible to type one command line
that runs LINK-80, loads TEMP/REL and executes it.
Place the FORTRAN 2 diskette in drive 1 and the
diskette which contains TEMP/REL into drive 0, and
enter:

L80 TEMP/REL-G

4.3 MORE COMMANDS AND SWITCHES

LINK-80 provides other capabilities besides loading
and executing programs, such as looking at output
without saving the program or resetting the loader
so that you can correct a mistake. Switches are
used to inform LINK-80 that you wish to perform
special tasks.

Here is an example that loads and saves a program
called TEST/REL.

>L80
*TEST, TEST-N-E

The first part of the command (TEST) 1loads the
program called TEST/REL. The next part (TEST-N)
saves a copy of the loaded program on disk in a
file called TEST/CMD. The last part (-E) causes
LINK-80 to exit back to TRSDOS.

4.3.1 THE -N SWITCH

Take note of the -N switch. This switch saves a
disk file of the executable memory image. The
default extension for the saved file is /CMD, and
this file is called a "command file." Once saved on
disk, you need only type the filename at TRSDOS
command level to run the program. The -N switch
must immediately follow the filename of each file
you wish to save, and it does not take effect until
a -E or -G switch is done.

The following example links several object files,
saves the main program image and executes the
program TAXES/REL.

>L80
*SUB1,SUB2 , TAXES~-N, TAXES~-G

Two FORTRAN subprograms (SUBL/REL and SUB2/REL) and
a main program (TAXES/REL) are linked and loaded.
The program is executed and the command file

TRS-80 FORTRAN User”s Manual Page 27

4.3.2

4.3.3

-P & -D

TAXES/CMD is saved on disk.

THE -R SWITCH

Another handy switch is -R. It returns LINK-80 to
its 1initial state by "unloading" whatever you“ve
loaded. Use it to reset the loader if you“ve made
a typing mistake or loaded the wrong program. The
-R switch takes effect as soon as LINK-80 sees it,
so if you enter it at any time while LINK-80 is
running, the loader will reset. For example:

>L80

*INVEN1

*—R (oops——meant to load INVEN2)
*INVEN2

* (now only INVEN2 is loaded)

SPECIAL SWITCHES

For typical FORTRAN-80 operation, only the above
switches will be needed. Some users may find that
their applications require more specialized
capabilities. For this reason, the following
switches are also provided with LINK-80.

In the examples above, all programs have been
loaded at the default origins for TRSDOS. 1In
special cases, the user may wish to specify the
origins of the programs and data that are loaded.
LINK-80 provides special switches to do this.

-P and -D allow the origin(s) to be set for the
next program loaded. -P and -D take effect when
seen (not deferred), and they have no effect on
programs already loaded. The form is -P:<address>
or -D:<address>, where <address> 1is the desired
origin in the current typeout radix. (Default
radix is hexadecimal. -0 sets radix to octal; -H
to hex.) LINK-80 does a default -P:<link origin>
(i.e., 5200).

If no -D is given, data areas are loaded before
program areas for each module. If a -D is given,
all Data and Common areas are loaded starting at
the data origin and the program area at the
program origin. Example:

TRS-80 FORTRAN User”s Manual Page 28

4.4

*-P:200

*MYPROG

Data 200 300
*-R

*-p:200-D:400
*MYPROG

Data 400 480
Program 200 280

NOTE

If -D is given and the data origin is less
than the program area, the user must be
sure there is enough room to keep the
program from being destroyed.

List the origin and end of the program and data
area and all undefined globals as soon as the
current command line has been interpreted. The
program information is only printed if a -D has
been done. Otherwise, the program is stored in
the data area.

List the origin and end of the program and data
area, all defined globals and their values, and
all undefined globals followed by an asterisk.
The program information is only printed if a -D
has been done. Otherwise, the program is stored
in the data area.

SYSTEM LIBRARY SEARCHES

Whenever LINK-80 saves or executes a FORTRAN
program (-N or -G), it automatically searches the
FORTRAN library and links the appropriate routines.
There 1is also a switch (-S) which forces a search
of the system library. You probably will never use
-5 with TRS-80 FORTRAN, unless you have a
single-drive system. With a single-drive system it
is necessary to load the program and search the
library in two separate steps, in which case the
command:

*FORLIB-S

is required to force a search of the FORTRAN
library. See Appendix A if you are using TRS-80
FORTRAN with a single-drive system.

TRS-80 FORTRAN User”s Manual Page 29

4.5 LINK-80 ERROR MESSAGES

LINK-80 has the following error messages:

?No Start Address

?Loading Error

?0ut of Memory

?Command Error

?<file> Not Found

A -G switch was issued, but no main
program had been loaded.

The last file given for input was not

a properly formatted LINK-80 object
file.

Not enough memory to load program.

Unrecognizable LINK-80 command.

<file>, as given in the command
string, did not exist.

$2nd COMMON Larger /XXXXXX/

The first definition of COMMON block
/XXXXXX/ was not the largest
definition. Reorder module loading
sequence or change COMMON block
definitions.

g¢Mult. Def. Global YYYYYY

$Overlaying Program
Data

More than one definition for the
global (internal) symbol YYYYYY was
encountered during the loading
process.

Area ,Start = xXxXxX
Public = <symbol name> (xxxx)
External = <symbol name> (xxxx)
A -D or -P will cause already 1loaded
data to be destroyed.

?Intersecting Program Area

Data

The program and data area intersect
and an address or external chain entry
is in this intersection. The £final
value cannot be converted to a current
value since it 1is in the area
intersection.

TRS-80 FORTRAN User”s Manual Page 30

Origin

Above
Below

Loader Memory, Move Anyway (Y or N)?

While attempting to execute a =-E or
-G, LINK-80 discovers that either the
data or program area has an origin
which lies above (or below) the
addresses that LINK-80 "recognizes" as
the boundaries of working memory. If
you answer "Y", LINK-80 will go ahead
and load there, even though some other
portion of the system (probably
TRSDOS) will be destroyed. If you
answer "N", LINK-80 will exit to
TRSDOS. In either case, if a -N was
given first, the CMD file will already
have been saved on disk.

?Can“t Save Object File

A disk error occurred when the file
was being saved. This is most often
caused by insufficient disk space when
LINK-80 tried to save the file.

TRS-80 FORTRAN User”s Manual Page 31

SECTION 5

EXECUTING FORTRAN PROGRAMS

You may execute a FORTRAN program in one of two ways. The
first 1is to use the -G switch in the loader command string
as described in Section 4.2. The second is simply to type
the name of an executable program file as saved by using the
-N switch in the loader command string.

In either case, your program should execute and your output
should appear on the screen. However, you may get a runtime
error message. If you do, look it up in the following list,
and return to EDIT-80 to debug your source file so that no
error is produced at runtime.

5.1 FORTRAN Runtime Error Messages

During execution of a FORTRAN program one oOr more
of the following errors could occur. Fatal errors

cause execution to cease. Execution continues
after a warning error. However, execution will
cease after 20 warnings. Runtime errors are

surrounded by asterisks as follows:

RFWk

Warning Errors:

IB Input Buffer Limit Exceeded
TL Too Many Left Parentheses in FORMAT
OB Output Buffer Limit Exceeded
DE Decimal Exponent Overflow
(Number in input stream had
an exponent larger than 99)
IS Integer Size Too Large
BE Binary Exponent Overflow
IN Input Record Too Long
ov Arithmetic Overflow
CN Conversion Overflow
on REAL to INTEGER Conversion
SN Argument to SIN Too Large
A2 Both Arquments of ATAN2 are 0
BI Buffer Size Exceeded During Binary I/O
RC Negative Repeat Count in FORMAT
FW FORMAT Field Width is Too Small
EX Illegal Exponentiation
GL Computed GOTO Number Too Large
GS Computed GOTO Number Too Small

TRS-80 FORTRAN User” s Manual Page 32

Fatal Errors:

ID Illegal FORMAT Descriptor

FO FORMAT Field Width is Zero

MP Missing Period in FORMAT

IT I/0 Transmission Error

ML Missing Left Parenthesis in FORMAT

DZ Division by Zero, REAL or INTEGER

LG Illegal Argument to LOG Function
(Negative or Zero)

I0 Illegal I/0 Operation

SQ Illegal Argument to SQRT Function (Negative)

DT Data Type Does Not Agree With FORMAT
Specification

EF EOF Encountered on READ

IR I FIELD REAL

DO Illegal Increment or Limit in DO Loop

FN File Not Found on OPEN

DF Disk Full Encountered on WRITE

UN Logical Unit Number (LUN) Too Large

oM Out of Memory

NOTE

It is possible, in rare cases, to get a
FORTRAN-80 internal error, as designated by
the error code "?2?2". This indicates an
internal malfunction of the runtime. If
you get the "??" error code, contact
Microsoft and report the conditions under
which the message appeared.

TRS-80 FORTRAN User”s Manual Page 33

APPENDIX A

Using TRS-80 FORTRAN
with a Single-Drive System

The sample session given in Section 1.2 of this manual
assumes the user has two or more disk drives. The following
steps illustrate one method of using TRS-80 FORTRAN on a
single-drive system to create, compile and exeucte TEMP/FOR:

l. Create a blank work diskette wusing the BACKUP
utility in TRSDOS.

2. Place the diskette labelled FORTRAN 2 in the drive
and type:

EDIT
When the editor responds with:

FILE:

remove the diskette and insert your work diskette.
Then type:

TEMP/FOR <break>
3. Enter the command

I

for automatic line number generation. Enter the
FORTRAN program (as shown in Figure 1), and type
<break> to return to EDIT-80 command level. To
exit the editor, enter the command:

E

The FORTRAN program TEMP/FOR has been written to
your work diskette.

TRS-80 FORTRAN User”s Manual Page 34

4,

Insert the diskette labelled FORTRAN 1 and type:
F80
The compiler will load into memory and prompt with
nRn, When the prompt appears, insert the work
diskette again and type:
=TEMP
to do a syntax check, or type:
TEMP , TEMP=TEMP

to create listing and relocatable files.

To load and execute the program, insert the
diskette labelled FORTRAN 2 and type:

L80

When the "*" prompt appears, insert the work
diskette and type:

TEMP
This loads the program. The loader will display a
list of undefined references (library routines) and
another prompt. Insert FORTRAN 2 again and type:

FORLIB-S
to search the 1library and load the necessary
routines. When the prompt appears again, insert
the work diskette and type:

TEMP-N-E

This will save TEMP/CMD on the work diskette. The
program may now be executed by simply typing:

TEMP

TRS-80 FORTRAN User”s Manual Page 35

APPENDIX B

Format of Link Compatible Object Files

NOTE

This appendix is reference
material for users who wish to
know the load format of
LINK-80 relocatable object
files. This information |is
provided ONLY for users who
have specialized skills and
the specific need to access
these files. Most users will
NOT require this material, as
it is NOT necessary to the
operation of LINK-80.

LINK-compatible object files consist of a bit stream.
Individual fields within the bit stream are not aligned on
byte boundaries, except as noted below. Use of a bit stream
for relocatable object files keeps the size of object files
to a minimum, thereby decreasing the number of disk
reads/writes.

There are two basic types of 1load items: Absolute and
Relocatable. The first bit of an item indicates one of
these two types. 1If the first bit is a 0, the following 8
bits are loaded as an absolute byte. If the first bit is a
1, the next 2 bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below).

01l Program Relative. Load the following 16
bits after adding the current Program
base.

10 Data Relative. Load the following 16

bits after adding the current Data base.

11 Common Relative. Load the following 16
bits after adding the current Common
base.

TRS-80 FORTRAN User”“s Manual Page 36

Special LINK items consist of the bit stream 100 followed

by:

a four-bit control field

an optional A field consisting
of a two-bit address type that
is the same as the two-bit field
above except 00 specifies
absolute address

an optional B field consisting
of 3 bits that give a symbol
length and up to 8 bits for
each character of the symbol

A general representation of a special LINK item is:

1l 00 xxxx Yy nn zzz + characters of symbol name
A field B field

XXXX Four-bit control field (0-15 below)

vy Two-bit address type field

nn Sixteen-bit value

222 Three-bit symbol length field

The following

= whoHOoO

The following
field and a B

5
6

7
8

special types have a B-field only:

Entry symbol (name for search)
Select COMMON block

Program name

Request library search
Reserved for future expansion

special LINK items have both an A
field:

Define COMMON size

Chain external (A is head of address chain,
B is name of external symbol)

Define entry point (A is address, B is name)
Reserved for future expansion

TRS-80 FORTRAN User”s Manual Page 37

The following special LINK items have an A field
only:

9 External + offset. The A value will
be added to the two bytes starting
at the current location counter
immediately before execution.

10 Define size of Data area (A is size)
11 Set loading location counter to A
12 Chain address. A is head of chain,

replace all entries in chain with current
location counter.
The last entry in the chain has an
address field of absolute zero.

13 Define program size (A is size)

14 End program (forces to byte boundary)

The following special Link item has neither an A nor
a B field:

15 End file

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

TRS-80 FORTRAN User”s Manual Page 38

APPENDIX C

FORTRAN Programs in ROM

If a FORTRAN program is intended for ROM, the programmer
should be aware of the following ramifications:

l.

DATA statements should not be used to initialize
RAM. Such initialization is done by the loader,
and will therefore not be present at execution.
Variables and arrays may be initialized during
execution via assignment statements, or by READing
into them.

FORMATs should not be read into during execution.

If the standard library I/O routines are used, DISK
files should not be OPENed on any LUNs other than
6, 7, 8, 9, 10. 1If other LUNs are needed for Disk
1/0, SLUNTB should be reassembled with the
appropriate addresses pointing to the Disk driver
routine.

LUNTBS must be assembled with the MACRO-80
Assembler, which is not included in the TRS-80
FORTRAN package. MACRO-80 1is supplied with the
TRS-80 Assembly Language Development System,
available from Microsoft Consumer Products.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

fortran-80
reference
manual

Information in this document is subject to change without notice and does not re?resent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied

only in accordance with the terms of the agreement.

(C) Microsoft, 1979

8201-342-03

fortran-80
reference
manual

Microsoft FORTRAN-80
for the Radio Shack
TRS-80 Model | Computer

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

fortran-80
reference
manual

Microsoft FORTRAN-80
for the Radio Shack
TRS-80 Model | Computer

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft FORTRAN-80, Release 3. 4 November, 1980

Addendum to: FORTRAN-80 Reference Manual
For TRS-80 Model I

Add to Section 8.2, Unformatted READ/WRITE:

Unformatted I/0 is possible to disk ONLY. Unformatted I/0
is not possible to a CRT or printer.

Add to Section 8.7.9, FORMAT Carriage Control:

FORTRAN-80 for TRS-80 Model I does NOT allow line feeds to
be suppressed from within FORTRAN programs. Thus, the
Format Control character "+" is not applicable to TRS-80
FORTRAN.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

MICROSOFT FORTRAN-80
Reference Manual

Contents

SECTION 1 Introduction . . . ¢ ¢ ¢ ¢ « « o . .

SECTION 2 Fortran Program Form

FORTRAN Character Set
1l Letters . . . ¢« « & « &
2 Digits 4 . . .
.3 Alphanumerics . .

4 Special Characters
FORTRAN Line Format
Statements
INCLUDE Statement .

NN NN
s s & »
s s s s
. s e »
e o o » 8 e
. s s e
. s s e
.
.

w

SECTION Data Representation/Storage Format .

Data Names and TYPeS .« « « « « « =« =
Names .« « « « o« o o o o o o o s
TYPES « + « « o« o s o s = o o s

Constants

Variables

Arrays and Array Elements

e WNH -
N =

Subscripts
Data Storage Allocation .

WWwWwwwwww

SECTION 4 FORTRAN EXPressSions . .« « « « o o o =«

1l Arithmetic Expressions . . . « « . .
2 Expression Evaluation
.3 Logical Expressions
3.1 Relational Expressions
3.2 Logical Operators . . . « « + « =«
4 Hollerith, Literal, and Hexadecimal

Constants in Expression

SECTION 5 Replacement Statements

SECTION 6 Specification Statements
6.1 Specification Statements
6.2 Array Declarators e &
6.3 Type Statements s 3
6.4 EXTERNAL Statements . . e . »
6.5 DIMENSION Statements

o

=
W WO W 0 0 o

=
=

SECTION

SECTION

COMMON Statements
EQUIVALENCE Statements . . .
DATA Initialization Statement
IMPLICIT Statement

O A
e e a
\O Q0 ~J O

~J

FORTRAN Control Statements .

GOTO Statements . .
Unconditional GOTO
Computed GOTO . .
Assigned GOTO . .

ASSIGN Statement . .

IF Statement
Arithmetic IF .
Logical IF

DO Statement

CONTINUE Statement .

STOP Statement . . .

PAUSE Statement . .

CALL Statement . . .

RETURN Statement . .

0 END Statement

L] . L]
W N -

. . »] . e @

N =

. .
. @ . . e 1] . o e

. e e " & ° e [
- . - L]
LI} . L) . . .

R B B N e IR U BN L JE BE RS R RS |

1
1
1
1
2
3
3
3
4
5
6
7
8
9
1

Input/Output« . . « .

.1 Formatted READ/WRITE
.l1.1 Formatted READ+ + .
.1.2 Formatted WRITE Statements
.2 Unformatted READ/WRITE . . .
+3 Disk File I/JO+ . .
.3.1 Random Disk I/O
.3.2 OPEN Subroutine
.4 Auxiliary I/O Statements . .
5 ENCODE/DECODE .« &« &+ « « « &
6
6
6

List Item Types
Special Notes on List
Specifications
FORMAT Statements . . .
Field Descriptors . .
Numeric Conversions .
Hollerith Conversions
Logical Conversion . .
X Descriptor
P Descriptor . . « +« « « .
Special Control Features
of FORMAT Statements . . .
.1 Repeat Specifications .
2 Field Separators
FORMAT Control, List Specif
and Record Demarcation . .
8.7.9 FORMAT Carriage Control .
8.7.1

8
8
8
8
8
8
8
8
8
8
8
8
8

-
.

e« & & = & 9+ 9
N NN NN N
® & s = 8 9
e« o e o & o+ @

00 00 00 0O 0O 0 Co
- L] L] L] L] L]
SN W

. & » .
L] « & & & @

LI) L] . L] e e .
. e e e .
. .

Input/Output List Specifications . .

ications

0 FORMAT Specifications in Arrays .

38
39
41
43

44

45
45
46
47
48
49
49
50
51
54
55
55
56
56
56

SECTION 9 Functions and Subprograms 85

PROGRAM Statement
Statement Functions . . .
Library Functions
Function Subprograms
Construction of Function Subprograms . 91
Referencing a Function Subprogram . . 93
Subroutine Subprograms 94
Construction of Subroutine Subprograms 94
Referencing a Subroutine Subprogram . 96
0 Return From Function and Subroutine
Subprograms . . .« « 4+ ¢ ¢ o o o o« o . 97
9.11 Processing Arrays in Subprograms . . . 98
9.12 BLOCK DATA Subroutine100
9.13 Program Chaining101

86
86
87
91

. . .

W WOWYWYWYYYwOWww
L] - - - [] . . L] .
HOY@@~ITaWU.sa W

APPENDIX A- Language Extensions and Restrictions .102
APPENDIX B~ I/O Interface . . . « « o« o« « « « « o 104
APPENDIX C- Subprogram Linkages106
APPENDIX D- ASCII Character Codes1l08

APPENDIX E- Referencing FORTRAN-80 Library
Subroutines + ¢ ¢ + + .+ « . 109

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

FORTRAN-80 Reference Manual Page 7

SECTION 1

INTRODUCTION

FORTRAN 1is a universal, problem oriented programming
language designed to simplify the preparation and check-out
of computer programs. The name of the language - FORTRAN -
is an acronym for FORmula TRANslator.

The syntactical rules for using the language are rigorous
and require the programmer to define fully the
characteristics of a problem in a series of precise
statements. These statements, called the source program,
are translated by a system program called the FORTRAN
processor into an object program in the machine language of
the computer on which the program is to be executed.

This manual defines the FORTRAN source language for the 8080
and z-80 microcomputers. This language includes the
American National Standard FORTRAN language as described in
ANSI document X3.9-1966, approved on March 7, 1966, plus a
number of language extensions and some restrictions. These
language extensions and restrictions are described in the
text of this document and are listed in Appendix A.

NOTE

This FORTRAN differs from the
Standard 1in that it does not
include the COMPLEX data type.

Examples are included throughout the manual to illustrate
the construction and use of the language elements. The
programmer should be familiar with all aspects of the
language to take full advantage of its capabilities.

Section 2 describes the form and components of an FORTRAN-80
source program. Sections 3 and 4 define data types and
their expressional relationships. Sections 5 through 9
describe the proper construction and usage of the various
statement classes.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

FORTRAN-80 Reference Manual Page 8

SECTION 2

FORTRAN PROGRAM FORM

FORTRAN-80 source programs consist of one program unit
called the Main program and any number of program units
called subprograms. A discussion of subprogram types and
methods of writing and using them is in Section 9 of this
manual.

Programs and program units are constructed of an ordered set
of statements which precisely describe procedures for
solving problems and which also define information to be
used by the FORTRAN processor during compilation of the
object program. Each statement is written using the FORTRAN
character set and following a prescribed line format.

2.1 FORTRAN CHARACTER SET

To simplify reference and explanation, the FORTRAN
character set 1is divided into four subsets and a
name is given to each.

2.1.1 LETTERS

A'BICID'EIF'GIH'IIJ'KILIM'NIOIPUQ’R'SFTFUI
v,w,X,Y,2,$

No distinction is made between upper and lower case
letters. However, for <clarity and 1legibility,
exclusive use of upper case letters is recommended.

2.1.2 DIGITS
0,1.,.,2,3,4,5,6,7,8,9

Strings of digits representing numeric quantities
are normally interpreted as decimal numbers.
However, in certain statements, the interpretation
is in the Hexadecimal number system in which case
the letters A, B, C, D, E, F may also be used as
Hexadecimal digits. Hexadecimal usage is defined
in the descriptions of statements in which such
notation is allowed.

2.1.3 ALPHANUMERICS

A sub-set of characters made up of all letters and
all digits.

FORTRAN-80 Reference Manual Page 9

2.1.4 SPECIAL CHARACTERS

Blank
= Equality Sign
+ Plus Sign
- Minus Sign
* Asterisk
/ Slash
(Left Parenthesis
) Right Parenthesis
' Comma
. Decimal Point

NOTES :

1. FORTRAN program lines consist of 80 character
positions or columns, numbered 1 through 80.
They are divided into four fields.

2. The following special characters are classified
as Arithmetic Operators and are significant in
the unambiguous statement of arithmetic
expressions.

+ Addition or Positive Value

- Subtraction or Negative Value
* Multiplication

/ Division

3. The other special characters have specific
application in the syntactical expression of
the FORTRAN language and in the construction of
FORTRAN statements.

4. Any printable character may appear in a
Hollerith or Literal field.

2.2 FORTRAN LINE FORMAT

A FORTRAN program line <consists of wup to 80
columns, divided into four fields:

l.

2.

Statement Label (or Number) field- Columns 1
through 5 (See definition of statement labels).

Continuation character field-
Column 6

Statement field-
Columns 7 through 72

Indentification field-
Columns 73 through 80

FORTRAN-80 Reference Manual Page 10

The identification field is available for any
purpose the FORTRAN programmer may desire and is
ignored by the FORTRAN processor.

The lines of a FORTRAN statement are placed in
Columns 1 through 72 formatted according to line
types. The four line types, their definitions, and
column formats are:

l. 1Initial Line -- the first or only line of each
statement.

1. Columns 1-5 may contain a statement label
to identify the statement.

2. Column 6 must be blank.

3. Columns 7-72 contain all or part of the
statement.

4, An initial line may begin anywhere within
the statement field.

Example:

C THE STATEMENT BELOW CONSISTS
C OF AN INITIAL LINE
C

A= .5*SQRT(3-2.*C)

2. Continuation Line -- used when additional lines
of coding are required to complete a statement
originating with an initial line.

1. Columns 1-5 are ignored, unless Column 1
contains a C.

2. If Column 1 contains a C, it is a comment
line.

3. Column 6 must contain a character other
than zero or blank.

4. Columns 7-72 contain the continuation of
the statement.

5. There may be as many continuation lines as
needed to complete the statement.

FORTRAN-80 Reference Manual Page 11

Example:
C THE STATEMENTS BELOW ARE AN INITIAL LINE
C AND 2 CONTINUATION LINES
C
63 BETA(l,2) =
1 A6BAR**7- (BETA(2,2)-A5BAR*50
2 +SQRT (BETA(2,1)))
Comment line -- used for source program
annotation at the convenience of the
programmer.

1. Column 1 contains the letter C.

2. Columns 2 - 72 are used in any desired

format to express the comment or they may
be left blank.

3. A comment line may be followed only by an
initial 1line, an END 1line, or another
comment line.

4, Comment lines have no effect on the object
program and are ignored by the FORTRAN
processor except for display purposes in
the listing of the program.

Example:
C COMMENT LINES ARE INDICATED BY THE
C CHARACTER C IN COLUMN 1.

C THESE ARE COMMENT LINES

END line -- the last line of a program unit.
l. Columns 1-5 may contain a statement 1label.
2. Column 6 must be blank.

3. Columns 7-72 contain the END statement.

4. Each FORTRAN program unit must have an END
line as 1its last 1line to inform the
Processor that it is at the physical end of
the program unit.

5. An END line may follow any other type line.

A statement label may be placed in columns 1-5 of a
FORTRAN statement initial 1line and 1is used for

FORTRAN-80 Reference Manual Page 12

reference purposes in other statements.

The following considerations govern the wuse of
statement labels:

1. The label is an integer from 1 to 99999.

2. The numeric value of the label, leading zeros
and blanks are not significant.

3. A label must be unique within a program unit.

4. A label on a continuation line 1is ignored by
the FORTRAN Processor.

Example:

C EXAMPLES OF STATEMENT LABELS
C
1
101
99999
763

STATEMENTS

Individual statements deal with specific aspects of
a procedure described 1in a program unit and are
classified as either executable or non-executable.

Executable statements specify actions and cause the
FORTRAN Processor to generate object program
instructions. There are three types of executable
statements:

1. Replacement statements.
2. Control statements.

3. Input/Output statements.

Non-executable statements describe to the processor
the nature and arrangement of data and provide
information about input/output formats and data
initialization to the object program during program
loading and execution. There are five types of
non-executable statements:

FORTRAN-80 Reference Manual Page 13

1. Specification statements.

2. DATA Initialization statements.

3. FORMAT statements.

4. FUNCTION defining statements.

5. Subprogram statements.

The proper usage and construction of the various

types of statements are described in Sections 5
through 9.

INCLUDE STATEMENT

The INCLUDE statement causes the compiler to bring
an outside FORTRAN source program into the current
program. The format of the statement is

INCLUDE<filename>
Use of INCLUDE eliminates the need to repeat an

often-used sequence of statements in the current
source file.

FORTRAN-80 Reference Manual Page 14

SECTION 3

DATA REPRESENTATION / STORAGE FORMAT

The FORTRAN Language prescribes a definitive method for
identifying data used in FORTRAN programs by name and type.

3.1

DATA NAMES AND TYPES

NAMES
1. Constant - An explicitly stated datum,.
2. Variable - A symbolically identified datum.

3. Array - An ordered set of data in 1, 2 or 3
dimensions.

4. Array Element - One member of the set of data
of an array.

TYPES
Integer -- Precise representation of integral
numbers (positive, negative or zero) having

precision to 5 digits in the range -32768 to +32767
inclusive (-2**15 to 2**15-1).

Real -- Approximations of real numbers (positive,
negative or zero) represented in computer storage
in 4-byte, floating-point form. Real data are
precise to 7+ significant digits and their
magnitude may lie between the approximate limits of
10**-38 and 10**38 (2**-127 and 2**127).

Double Precision -- Approximations of real numbers
(positive, negative or zero) represented in
computer storage in 8-byte, floating-point form.
Double Precision data are precise to 16+
significant digits in the same magnitude range as
real data.

Logical -- One byte representations of the truth
values "TRUE" or "FALSE" with "FALSE defined to
have an internal representation of zero. The
constant .TRUE. has the wvalue -1, however any
non-zero value will be treated as .TRUE. in a
Logical IF statement. 1In addition, Logical types
may be used as one byte signed integers in the
range -128 to +127, inclusive.

FORTRAN-80 Reference Manual Page 15

5.

Hollerith -- A string of any number of characters
from the computer's character set. All characters
including blanks are significant. Hollerith data

require one byte for storage of each character in
the string.

Extended Integer -- INTEGER*4 is an extended
precision representation using 32-bit two's
complement (four 8-bit bytes) for 9+ significant
digits in the range -2147483648 to +2147483647
inclusive (-2**3]1 to 2**31-1).

Integer*4 variables cannot be used as Logical Unit
Numbers, array indices, implied DO loop indices, or
as the control variable in computed or assigned
GOTO statements.

CONSTANTS
FORTRAN constants are identified explicitly by
stating their actual value. The plus (+) character

need not precede positive valued constants.

Formats for writing constants are shown in Table
3-1.

FORTRAN-80

TYPE

INTEGER

REAL

Reference Manual

Table 3-1. CONSTANT FORMATS

FORMATS AND RULES OF USE EXAMPLES
1. 1 to 5 decimal digits -763
interpreted as a deci- 1
mal number. +00672
2. A preceding plus (+) or -32768
minus (-) sign is op- +32767
tional.
3. No decimal point (.) or - 32 767

comma (,) is allowed but
spaces are permitted in
the source program.

Value range: -32768
through +32767 (.i.e.,
-2**]15 through 2**15-1).

A decimal number with 345,
precision to 7 digits -.345678
and represented in one +345.678
of the following forms: +.3E3
-73E4

a. + or -.f + or -i.f
b. + or -i.E+ or -e

+ or -.fE+ or -e

+ or -i.fE+ or -e

where i, £, and e are
each strings represent-
ing integer, fraction,

and exponent respectively.

Plus (+) and minus (-)
characters are optional.

In the form shown in 1 b
above, if r represents any
of the forms preceding

E+ or -e (i.e., rE+ or -e),
the value of the constant
is interpreted as r times
l0**e, where -38=E=38.

Page

16

FORTRAN-80 Reference Manual Page

TYPE

DOUBLE

PRECISION

LOGICAL

FORMATS AND RULES OF USE EXAMPLES

4, 1If the constant preceding
E+ or -e contains more
significant digits than
the precision for real
data allows, truncation
occurs, and only the
most significant digits
in the range will be rep-
resented.

A decimal number with +345.678
precision to 16 digits. All +.3D3
formats and rules are identi- =73D4

cal to those for REAL con-
stants, except D is used in
place of E. Note that a real
constant is assumed single pre-
cision unless it contains a

"D" exponent.

.TRUE. generates a non-zero .TRUE.
byte (hexadecimal FF) and .FALSE.
.FALSE. generates a byte in

which all bits are 0.

If logical values are

used as one-byte integers, the
rules for use are the same as
for type INTEGER, except that
the range allowed is -128 to
+127, inclusive.

17

FORTRAN-80 Reference Manual

TYPE

LITERAL

HEXADECIMAL

INTEGER*4

FORMATS AND RULES OF USE

In the literal form, any
number of characters may be
enclosed by single quotation
marks. The form is as follows:

'X1X2X3...Xn'

where each Xi is any charac-
ter other than '. Two
quotation marks in succession
may be used to represent the
quotation mark character
within the string, i.e.,

if X2 is to be the quotation
mark character, the string
appears as the following:

'X1''X3...Xn’

1. The letter Z or X
followed by a single quote,
up to 4 hexadecimal

digits (0-9 and A-F) and a
single quote is recognized
as a hexadecimal value.

2. A hexadecimal constant is
right justified in its storage
value.

1. One to ten decimal digits
interpreted as a decimal
number.

2. A preceding plus or minus
sign is optional.

3. No deciml point or comma
is allowed, but spaces are
permitted in the source
program.

4. Value range:
-2147483648 through 2147483647
(i.e., -2%**31 through 2**31-1).

Page

EXAMPLES

z'12!

X'ABL1F'
Z'FFFF'

X'1F'

1234567890
0

-2147483647

- 2 147 483 647

18

FORTRAN-80 Reference Manual Page 19

3.3 VARIABLES

Variable data are identified in FORTRAN statements
by symbolic names. The names are unique strings of
from 1 to 6 alphanumeric characters of which the
first is a letter.

NOTE

System variable names and runtime
subprogram names are distinguished from
other variable names in that they begin
with the dollar sign character ($). It is
therefore strongly recommended that in
order to avoid conflicts, symbolic names in
FORTRAN source programs begin with some
letter other than "§$".

Examples:
I5, TBAR, B23, ARRAY, XFM79, MAX, AlSC

Variable data are classified into four types:
INTEGER, REAL, DOUBLE PRECISION and LOGICAL. The
specification of type is accomplished in one of the
following ways:

1. Implicit typing in which the first letter of
the symbolic name specifies Integer or Real
type. Unless explicitly typed (2., below),
symbolic names beginning with I, J, K, L, M or
N represent Integer variables, and symbolic
names beginning with letters other than I, J,
K, L, M or N represent Real variables.

Integer Variables

ITEM
Jl
MODE
K123
N2

FORTRAN-80 Reference Manual Page 20

Real Variables

BETA
H2
ZAP
AMAT
XID

2. Variables may be typed explicitly. That 1is,
they may be given a particular type without
reference to the first letters of their names.
Variables may be explicitly typed as INTEGER,
REAL, DOUBLE PRECISION or LOGICAL. The
specific statements used in explicitly typing
data are described in Section 6.

Variable data receive their numeric value assignments during
program execution or, initially, in a DATA statement
(Section 6).

Hollerith or Literal data may be assigned to any type

variable. Sub-paragraph 3.6 contains a discussion of
Hollerith data storage.

3.4 ARRAYS AND ARRAY ELEMENTS

An array is an ordered set of data characterized by
the property of dimension. An array may have 1, 2
or 3 dimensions and is identified and typed by a
symbolic name in the same manner as a variable
except that an array name must be so declared by an
"array declarator." Complete discussions of the
array declarators appear in Section 6 of this

manual. An array declarator also indicates the
dimensionality and size of the array. An array

element is one member of the data set that makes up
an array. Reference to an array element in a
FORTRAN statement is made by appending a subscript
to the array name. The term array element 1is
synonymous with the term subscripted variable used
in some FORTRAN texts and reference manuals.

An initial value may be assigned to any array
element by a DATA statement or its value may be
derived and defined during program execution.

FORTRAN-80 Reference Manual Page 21

3.5 SUBSCRIPTS

A subscript follows an array name to uniquely
identify an array element. 1In use, a subscript in
a FORTRAN statement takes on the same
representational meaning as a subscript in familiar
algebraic notation.

Rules that govern the wuse of subscripts are as
follows:

l. A subscript contains 1, 2 or 3 subscript
expressions (see 4 below) enclosed in
parentheses.

2. If there are two or three subscript expressions
within the parentheses, they must be separated
by commas.

3. The number of subscript expressions must be the
same as the specified dimensionality of the
Array Declarator except in EQUIVALENCE
statements (Section 6).

4, A subscript expression is written in one of the
following forms:

K C*V V-K
V C*V+K C*V=K
V+K

where C and K are integer constants and V is an
integer variable name (see Section 4 for a
discussion of expression evaluation).

5. Subscripts themselves may not be subscripted.
Examples:

X(2*3-3,7) A(I,J,K) I(20) C(L-2) Y(I)

FORTRAN-80 Reference Manual Page 22

3.6

DATA STORAGE ALLOCATION

Allocation of storage for FORTRAN data is made 1in
numbers of storage units. A storage unit is the
memory space required to store one real data value
(4 bytes).

Table 3-2 defines the word formats of the three
data types.

Hexadecimal data may be associated (via a DATA
statement) with any type data. Its storage
allocation is the same as the associated datum.

Hollerith or literal data may be associated with
any data type by wuse of DATA initializaton
statements (Section 6).

Up to eight Hollerith characters may be associated
with Double Precision type storage, up to four with
Real or Integer*4, up to two with Integer*2, and
one with Logical type storage.

FORTRAN-80 Reference Manual Page 23

TYPE

INTEGER

LOGICAL

REAL

TABLE 3-2. STORAGE ALLOCATION BY DATA TYPES

ALLOCATION

2 bytes/ 1/2 storage unit

S Binary Value

Negative numbers are the two's complement of
positive representations. The storage order
is reversed. The least significant byte is
followed by the most significant byte.

1 bvte/ 1/4 storage unit

Zero|(false) or|non-zero| (true)

A non-zero valued byte indicates true (the
logical constant .TRUE. is represented by
the hexadecimal value FF). A zero valued
byte indicates false.

When used as an arithmetic value, a Logical

datum 1is treated as an Integer in the range
-128 to +127.

4 bytes/ 1 storage unit

Characteristic S | Mantissa (hi)

Mantissa (mid) Mantissa (low)

The first byte is the characteristic
expressed in excess 200 (octal) notation:
i.e., a value of 200 (octal) corresponds to a
binary exponent of 0. Values less than 200
(octal) correspond to negative exponents, and
values greater than 200 correspond to
positive exponents. By definition, if the
characteristic 1is zero, the entire number is
zero.

The next three bytes constitute the mantissa.
The mantissa 1is always normalized such that
the high order bit is one, eliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the
number. A one indicates a negative number,
and zero indicates a positive number. The
mantissa is assumed to be a binary fraction
whose binary point is to the left of the
mantissa. The format of the mantissa is
"signed magnitude." The bytes are stored in

FORTRAN-8

DOUBLE
PRECISION

INTEGER*4

0 Reference Manual Page 24

reverse order: mantissa low order, followed
by mid order, high order, and characteristic.

8 bytes/ 2 storage units

The internal form of Double Precision data is
identical with that of Real data except
Double Precision uses 4 extra bytes for the
matissa.

4 bytes/ 1 storage unit
Negative numbers are represented in two's
complement form. The bytes are stored in

reverse order, least significant to most
significant.

TABLE 3-3. EQUIVALENT DATA TYPES AND SIZES

Equivalent Representations Size in Bytes

BYTE
INTEGER*1
LOGICAL

e

INTEGER
INTEGER*2
LOGICAL*2

INTEGER*4
LOGICAL*4

Lo NN

REAL
REAL*4

DOUBLE PRECISION
REAL*8

@ Lo 0

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

FORTRAN-80 Reference Manual Page 25

SECTION 4

FORTRAN EXPRESSIONS

A FORTRAN expression is composed of a single operand or a
string of operands connected by operators. Two expression
types --Arithmetic and Logical-- are provided by FORTRAN.
The operands, operators and rules of use for both types are
described in the following paragraphs.

4.1 ARITHMETIC EXPRESSIONS

The following rules define all permissible
arithmetic expression forms:

l. A constant, variable name, array element
reference or FUNCTION reference (Section 9)
standing alone is an expression.

Examples:
S(I) JOBNO 217 17.26 SORT (A+B)

2., If E is an expression whose first character |is
not an operator, then +E and -E are called
signed expressions.

Examples:
-S +JOBNO =217 +17.26 -=SQRT(A+B)

3. If E is an expression, then (E) means the
quantity resulting when E is evaluated.

Examples:
(-A) - (JOBNO) -(X+1) (A-SQRT (A+B))

4. If E is an unsigned expression and F is any
expression, then: F+E, F-E, F*E, F/E and F**E
are all expressions.

Examples:

-(B(I,J)+SQRT(A+B(K,L)))
1.7E-2*%*(X+5.0)
-(B(I+3,3*J+5)+A)

5. An evaluated expression may be Integer,
Extended 1Integer, Real, Double Precision, or
Logical. The type is determined by the data
types of the elements of the expression. If

FORTRAN-80 Reference Manual Page 26

the elements of the expression are not all of
the same type, the type of the expression is
determined by the element having the highest
type. The type hierarchy (highest to lowest)
is as follows: DOUBRLE PRECISION, REAL,
INTEGER*4, INTEGER, LOGICAL.

Expressions may contain nested parenthesized
elements as in the following:

A* (Z-((Y+X) /T)) **J

where Y+X is the innermost element, (Y+X)/T 1is
the next innermost, Z-((Y+X)/T) the next. 1In
such expressions, care should be taken to see
that the number of 1left parentheses and the
number of right parentheses are equal.

EXPRESSION EVALUATION

Arithmetic expressions are evaluated according to
the following rules:

1.

Parenthesized expression elements are evaluated
first. If parenthesized elements are nested,
the innermost elements are evaluated, then the
next innermost until the entire expression has
been evaluated.

Within parentheses and/or wherever parentheses
do not govern the order or evaluation, the
hierarchy of operations in order of precedence
is as follows:

a. FUNCTION evaluation
b. Exponentiation

c. Multiplication and Division
d. Addition and Subtraction

Example:
The expression
A* (Z-((Y+R) /T)) **J+VAL

is evaluated in the following sequence:

el = Y+R
e2 = (el)/T
e3 = Z-e2
ed = el3**J
e5 = A*ed
e6 = e5+VAL

FORTRAN-80 Reference Manual Page 27

3. The expression X**Y**7 js not allowed. It
should be written as follows:

(X**Y) *k7 or x**(y**z)
4, Use of an array element reference requires the
evaluation of its subscript. Subscript

expressions are evaluated under the same rules
as other expressions.

LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

1. A single Logical Constant (i.e., .TRUE. or
.FALSE.), a Logical variable, Logical Array
Element or Logical FUNCTION reference (see
FUNCTION, Section 9).

2, Two arithmetic expressions separated by a
relational operator (i.e., a relational
expression).

3. Logical operators acting upon logical
constants, logical variables, 1logical array
elements, logical FUNCTIONS, relational

expressions or other logical expressions.

The value of a logical expression is always either
.TRUE. or .FALSE.

FORTRAN-80 Reference Manual Page 28

4.3.1

RELATIONAL EXPRESSIONS

The general form of a relational expression is as
follows:

el r e2
where el and e2 are arithmetic expressions and r is

a relational operator. The six relational
operators are as follows:

.LT. Less Than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

The value of the relational expression 1is .TRUE.
if the condition defined by the operator is met.
Otherwise, the value is .FALSE.

Examples:

A.EQ.B
(A**J) .GT. (ZAP* (RHO*TAU~-ALPH))

FORTRAN-80 Reference Manual Page 29

4.3.2

LOGICAL OPERATORS

Table 4-1 lists the logical operations. U and V
denote logical expressions.

Table 4-1. Logical Operations

.NOT.U

U.AND.V

U.OR.V

U.XOR.V

Examples:

The value of this expression is the
logical complement of U (i.e., 1
bits become 0 and 0 bits become 1).

The value of this expression is the

logical product of U and V (i.e.,
there 1is a 1 bit in the result only
where the corresponding bits in both
U and V are 1.

The value of this expression is the

logical sum of U and V (i.e., there
is a 1 in the result if the
corresponding bit in U or V is 1 or
if the corresponding bits in both U
and V are 1.

The value of this expression is the
exclusive OR of U and V (i.e., there
is a one in the result if the
corresponding bits in U and V are 1
and 0 or 0 and 1 respectively.

If U = 01101100 and V = 11001001 , then

.NOT.U
U.AND.V
U.OR.V
U.XO0OR.V

10010011
01001000
11101101
10100101

FORTRAN-80 Reference Manual Page 30

The following are ‘additional considerations for
construction of Logical expressions:

1.

Any Logical expression may be enclosed in
parentheses. However, a Logical expression to
which the .NOT. operator is applied must be
enclosed 1in parentheses if it contains two or
more elements.

In the hierarchy of operations, parentheses may
be used to specify the ordering of the
expression evaluation. Within parentheses, and
where parentheses do not dictate evaluation
order, the order 1is understood to be as
follows:

a. FUNCTION Reference

b. Exponentiation (**%*)

c. Multiplication and Division (* and /)

d. Addition and Subtraction (+ and =)

e. .LT., .LE., .EQ., .NE., .GT., .GE.

f‘ DNOTD

g' 'ANDD

h. .OR., .XOR.

Examples:

The expression
X .AND. Y .OR. B(3,2) .GT. 2

is evaluated as

el = B(3,2).GT.2
e2 = X .AND. Y
e3 = e2 .OR, el

The expression

X .AND. (Y .OR. B(3,2) .GT. 2)
is evaluated as

el = B(3,2) .GT. 2

e2 =Y .OR. el
e3 = X .AND. e2

FORTRAN-80 Reference Manual Page 31

EXPRESSIONS

3. It is invalid to have two contiguous logical
operators except when the second operator is
.NOT. That 1is,

.AND. .NOT.
and

.OR. .NOT.

are permitted.

Example:
A.AND. .NOT.B is permitted
A.AND. .OR.B is not permitted

HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN

Hollerith, Literal, and Hexadecimal constants are
allowed in expressions in place of Integer
constants. These special constants always evaluate
to an Integer value and are therefore limited to a
length of two bytes. The only exceptions to this
are:

1. Long Hollerith or Literal constants may be used
as subprogram parameters.

2. Hollerith, Literal, or Hexadecimal constants
may be up to four bytes long in DATA statements
when associated with Real variables, or up to
eight bytes 1long when associated with Double
Precision variables.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

FORTRAN-80 Reference Manual Page 32

SECTION 5

REPLACEMENT STATEMENTS

Replacement statements define computations and are used
similarly to equations in normal mathematical notation.
They are of the following form:

v =2=e

where v is any variable or array element and e is an
expression.

FORTRAN semantics defines the equality sign (=) as meaning
to be replaced by rather than the normal is equivalent to.
Thus, the object program instructions generated by a
replacement statement will, when executed, evaluate the
expression on the right of the equality sign and place that
result in the storage space allocated to the variable or
array element on the left of the equality sign.

The following conditions apply to replacement statements:

1. Both v and the equality sign must appear on the
same line. This holds even when the statement is
part of a logical IF statement (section 7).
Example:

C IN A REPLACEMENT STATEMENT THE '='

C MUST BE IN THE INITIAL LINE.
A(5,3) =
1 B(7,2) + SIN(C)

The line containing v= must be the initial line of
the statement unless the statement 1is part of a
logical IF statement. In that case the v= must
occur no later than the end of the first line after
the end of the IF.

2., If the data types of the variable, v, and the
expression, e, are different, then the wvalue
determined by the expression will be converted, if
possible, to conform to the typing of the variable.
Table 5-1 shows which type expressions may be
equated to which type of variable. Y indicates a
valid replacement and N indicates an invalid
replacement. Footnotes to Y indicate conversion
considerations.

FORTRAN-80 Reference Manual Page 33
Table 5-1. Replacement By Tvpe
Expression Types (e)

Variable
Types Integer Real Logical Double Ext Int
Integer Y Ya Yb Ya Yg
Real Yc Y Yc Ye Yc
Logical Yd Ya Y Ya Yd
Double Yc Y Yc Y Yc
Ext Int Yf Yh Yb, £ Yh Y

a. The Real expression value is converted to Integer,
truncated 1if necessary to conform to

Integer data.

the range of

b. The sign is extended through the second byte.
c. The variable is assigned the Real approximation of

the Integer value of the expression.

d. The variable is assigned the truncated value of the

Integer expression (the low-order

regardless of sign).

byte

is used,

e. The variable is assigned the rounded value of the

Real expression.

f. The sign is extended through the third

bytes.

and fourth

g. The variable is assigned the truncated value of the

Extended Integer expression.

h. The expression value 1is converted

Integer and truncated to conform

Extended Integer data.

to Extended

to the range of

FORTRAN-80 Reference Manual Page 34

SECTION 6

SPECIFICATION STATEMENTS

Specification statements are non-executable, non-generative
statements which define data types of variables and arrays,
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN
processor. DATA intialization statements are
non-executable, but generate object program data and
establish initial values for variable data.

6.1 SPECIFICATION STATEMENTS

There are seven kinds of specification statements.
They are as follows:

IMPLICIT statements

Type, EXTERNAL, and DIMENSION statements
COMMON statements

EQUIVALENCE statements

DATA initialization statements

All specification statements are grouped at the
beginning of a program unit and must be ordered as
they appear above. Specification statements may be
preceded only by a FUNCTION, SUBROUTINE, PROGRAM or
BLOCK DATA statement. All specification statements
must precede statement functions and the first
executable statement.

6.2 ARRAY DECLARATORS

Three kinds of specification statements may specify
array declarators. These statements are the
following:

Type statements
DIMENSION statements
COMMON statements

Of these, DIMENSION statements have the declaration
of arrays as their sole function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3, 6.5 and 6.6.

Array declarators are used to specify” the name,
dimensionality and sizes of arrays. An array may
be declared only once in a program unit.

FORTRAN-80 Reference Manual Page 35

An array declarator has one of the following forms:

ui (k)
ui (kl,k2)
ui (kl,k2,k3)

where ui is the name of the array, called the
declarator name, and the k's are integer constants.

Array storage allocation is established upon
appearance of the array declarator. Such storage
is allocated 1linearly by the FORTRAN processor
where the order of ascendancy is determined by the
first subscript varying most rapidly and the last
subscript varying least rapidly.

For example, if the array declarator AMAT(3,2,2)
appears, storage 1is allocated for the 12 elements
in the following order:

AMAT(1,1,1), AMAT(2,1,1), AMAT(3,1,1), AMAT(1l,2,1),

AMAT(2,2,1), AMAT(3,2,1), AMAT(1,1,2), AMAT(2,1,2),
AMAT(3,1,2), AMAT(1,2,2), AMAT(2,2,2), AMAT(3,2,2)

TYPE STATEMENTS

Variable, array and FUNCTION names are
automatically typed Integer or Real by the
'‘predefined' convention unless they are changed by
Type statements. For example, the type is Integer
if the first letter of an item is I, J, K, L, M or
N. Otherwise, the type is Real.

Type statements provide for overriding or
confirming the pre-defined convention by specifying
the type of an item. In addition, these statements
may be used to declare arrays.

Type statements have the following general form:
t vl,v2,...vn

where t represents one of the terms INTEGER,
INTEGER*], INTEGER*2, INTEGER*4, REAL, REAL*4,
REAL*8, DOUBLE PRECISION, LOGICAL, LOGICAL*1,
LOGICAL*2, LOGICAL*4, or BYTE. Each v is an array
declarator or a variable, array or FUNCTION name.
The INTEGER*], INTEGER*2, INTEGER*4, REAL*4,
REAL*8, LOGICAL*1l, LOGICAL*2, LOGICAL*4 types are
allowed for readability and compatibility with
other FORTRANSs.

FORTRAN-80 Reference Manual Page 36

Example:
REAL AMAT(3,3,5),BX,IETA,KLPH

NOTE

1. AMAT and BX are redundantly typed..
2. IETA and KLPH are unconditionally
declared Real.

3. AMAT(3,3,5) |is a constant array
declarator specifying an array of 45
elements.

Example:

INTEGER M1, HT, JMP(1l5), FL

NOTE

M1l is redundantly typed here. Typing of HT
and FL by the pre-defined convention is
overridden by their appearance in the
INTEGER statement. JMP(15) is a constant
array declarator. It redundantly types the
array elements as Integer and communicates
to the processor the storage requirements
and dimensionality of the array.

ExamEle:
LOGICAL L1, TEMP

NOTE

All variables, arrays or FUNCTIONs required
to be typed Logical must appear in a
LOGICAL statement, since no starting letter
indicates these types by the default
convention.

FORTRAN-80 Reference Manual Page 37

6.4

EXTERNAL STATEMENTS

EXTERNAL statements have the following form:
EXTERNAL ul,u2,...,un

where each ui is a SUBROUTINE, BLOCK DATA or
FUNCTION name. When the name of a subprogram is
used as an argument in a subprogram reference, it
must have appeared in a preceding EXTERNAL
statement.

When a BLOCK DATA subprogram is to be included in a
program load, its name must have appeared in an
EXTERNAL statement within the main program unit.

For example, if SUM and AFUNC are subprogram names
to be used as arguments in the subroutine SUBR, the
following statements would appear in the calling
program unit:

EXTERNAL SUM, AFUNC

CALL SUBR(SUM,AFUNC,X,Y)

DIMENSION STATEMENTS

A DIMENSION statement has the following form:
DIMENSION u2,u2,u3,...,un
where each ui is an array declarator.
Example:
DIMENSION RAT(5,5) ,BAR(20)

This statement declares two arrays - the 25 element
array RAT and the 20 element array BAR.

FORTRAN-80 Reference Manual Page 38

6.6

COMMON STATEMENTS

COMMON statements are non-executable, storage
allocating statements which assign variables and
arrays to a storage area called COMMON storage and
provide the facility for various program units to
share the use of the same storage area.

COMMON statements are expressed in the following
form:

COMMON /yl/al/y2/a2/.../yn/an

where each yi is a COMMON block storage name and
each ai 1is a sequence of variable names, array
names or constant array declarators, separated by
commas. The elements in ai make up the COMMON
block storage area specified by the name vyi. If
any yi 1is omitted leaving two consecutive slash
characters (//), the block of storage so indicated
is called blank COMMON. If the first block name
(yl) is omitted, the two slashes may be omitted.

ExamEle:
COMMON /AREA/A,B,C/BDATA/X,Y,Z,
X FL, ZAP(30)

In this example, two blocks of COMMON storage are
allocated - AREA with space for three variables and
BDATA, with space for four variables and the 30
element array, ZAP.

Example:
COMMON //Al,Bl1/CDATA/ZOT(3,3)
X //T2,23

In this example, Al, Bl, T2 and Z3 are assigned to
blank COMMON in that order. The pair of slashes
preceding Al could have been omitted.

CDATA names COMMON block storage for the nine
element array, 20T and thus ZO0T (3,3) is an array
declarator. 20T must not have been previously
declared. (See "Array Declarators," Paragraph
6.3.)

Additional Considerations:

1. The name of a COMMON block may appear more than
once in the same COMMON statement, or in more
than one COMMON statement.

FORTRAN-80 Reference Manual Page 39

2. A COMMON block name is made up of from 1 to 6
alphanumeric characters, the first of which
must be a letter.

3. A COMMON block name must be different from any
subprogram names used throughout the program.

4. The size of a COMMON area may be increased by
the use of EQUIVALENCE statements. See
"EQUIVALENCE Statements," Paragraph 6.7.

5. The lengths of COMMON blocks of the same name
need not be identical in all program units
where the name appears. However, if the
lengths differ, the program unit specifying the
greatest length must be loaded first (see the
discussion of LINK-80 in the User's Guide).
The length of a COMMON area is the number of
storage units required to contain the variables
and arrays declared in the COMMON statement (or
statements) unless expanded by the use of
EQUIVALENCE statements.

EQUIVALENCE STATEMENTS

Use of EQUIVALENCE statements permits the sharing
of the same storage unit by two or more entities.
The general form of the statement is as follows:

EQUIVALENCE (ul), (u2),...,(un)

where each ui represents a sequence of two or more
variables or array elements, separated by commas.
Each element in the sequence is assigned the same
storage unit (or portion of a storage unit) by the
processor. The order in which the elements appear
is not significant.

Example:
EQUIVALENCE (A,B,C)

The variables A, B and C will share the same
storage unit during object program execution.

If an array element is wused in an EQUIVALENCE
statement, the number of subscripts must be the
same as the number of dimensions established by the
array declarator, or it must be one, where the one
subscript specifies the array element's number
relative to the first element of the array.

FORTRAN-80 Reference Manual Page 40

Example:

If the dimensionaliity of an array, 2, has been
declared as Z(3,3) then in an EQUIVALENCE statement
Z(6) and 2(3,2) have the same meaning.

Additonal Considerations:

1-

2-

The subscripts of array elements must be
integer constants.

An element of a multi-dimensional array may be
referred to by a single subscript, if desired.

Variables may be assigned to a COMMON block
through EQUIVALENCE statements.

Example:

COMMON /X/A,B,C
EQUIVALENCE (A,D)

In this case, the variables A and D share the
first storage unit in COMMON block X.

EQUIVALENCE statements can increase the size of
a block indicated by a COMMON statement by
adding more elements to the end of the block.

Example:

DIMENSION R(2,2)
COMMON /Z2/W,X,Y
- EQUIVALENCE (Y,R(3))

The resulting COMMON block will have the
following configuration:

Variable Storage Unit

W = R(1,1) 0
X = R(2,]1) 1
Y = R(1,2) 2

R(2,2) 3

The COMMON block established by the COMMON
statement contains 3 storage units. It is
expanded to 4 storage units by the EQUIVALENCE
statement.

COMMON block size may be increased only from
the last element established by the COMMON
statement forward; not from its first element
backward.

FORTRAN-80 Reference Manual Page 41

Note that EQUIVALENCE (X,R(3)) would be invalid
in the example. The COMMON statement
established W as the first element in the
COMMON block and an attempt to make X and R(3)
equivalent would be an attempt to make R(1l) the
first element.

5. It is invalid to EQUIVALENCE two elements of
the same array or two elements belonging to the
same or different COMMON blocks.

Example:

DIMENSION XTABLE (20), D(5)
COMMON A,B(4)/ZAP/C,X

"EQUIVALENCE (XTABLE (6),A(7),
X B(3) ,XTABLE(15)),
Y (B(3) ,D(5))

This EQUIVALENCE statement has the following
errors:

1. It attempts to EQUIVALENCE two elements of the
same array, XTABLE(6) and XTABLE(1l5).

2. It attempts to EQUIVALENCE two elements of the
same COMMON block, A(7) and B(3).

3. Since A is not an array, A(7) is an illegal
reference.

4. Making B(3) equivalent to D(5) extends COMMON
backwards from its defined starting point.

DATA INITIALIZATION STATEMENT

The DATA initialization statement is a
non-executable statement which provides a means of
compiling data values into the object program and
assigning these data to variables and array
elements referenced by other statements.

The statement is of the following form:
DATA list/ul,u2,...,un/,list.../uk,uk+l,...uk+n/

where "list" represents a list of variable, array
or array element names, and the ui are constants

FORTRAN-80 Reference Manual Page 42

corresponding in number to the elements in the
list. An exception to the one-for-one
correspondence of list items to constants 1is that
an array name (unsubscripted) may appear in the
list, and as many constants as necessary to fill
the array may appear in the corresponding position
between slashes. Instead of ui, it is permissible
to write k*ui in order to declare the same
constant, ui, k times in succession. k must be a
positive integer. Dummy arguments may not appear
in the list.

Example:

DIMENSION C(7)
DATA A, B, C(l),C(3)/14.73,
X -8.1,2*7.5/

This implies that
A=14.73, B=-8.1, C(1)=7.5, C(3)=7.5

The type of each constant ui must match the type of
the corresponding item in the list, except that a
Hollerith or Literal constant may be paired with an
item of any type.

When a Hollerith or Literal constant is used, the
number of characters in its string should be no
greater than four times the number of storage units
required by the corresponding item, i.e., 1
character for a Logical variable, up to 2
characters for an Integer variable and 4 or fewer
characters for a Real variable.

If fewer Hollerith or Literal characters are
specified, trailing blanks are added to fill the
remainder of storage.

Hexadecimal data are stored in a similar fashion.
If fewer Hexadecimal characters are used,
sufficient leading zeros are added to £fill the
remainder of the storage unit.

FORTRAN-80 Reference Manual Page 43

6.9

The examples below illustrate many of the features
of the DATA statement.

DIMENSION HARY (2)
DATA HARY,B/ 4HTHIS, 4H OK.
1 +7.86/

REAL LIT(2)

LOGICAL LT,LF

DIMENSION H4(2,2),PI3(3)

DATA Al,Bl,Kl,LT,LF,H4(1,1),H4(2,1),

H4 (1,2) ,H4(2,2),PI3/5.9,2.5E-4,

64, .FALSE.,.TRUE.,1.75E-3,
0.85E-1,2*75,0,1.,2.,3.14159/,
LIT(1l)/'NOGO'/

B W

IMPLICIT STATEMENT

The IMPLICIT statement is used to redefine default
variable types. The syntax is:

IMPLICIT type(range) ,type(range),...

where type is one of the following: INTEGER, REAL,
LOGICAL, DOUBLE PRECISION, BYTE, INTEGER*1,
INTEGER*2, INTEGER*4, REAL*4, REAL*S8

and range 1is a 1list of alphabetic characters
separated by commas or hyphens.

Examples:
IMPLICIT INTEGER(A,W-Z),REAL(B-V)

All variables (not otherwise declared) starting
with the 1letters A, W, X, Y, Z will be type
INTEGER. All variables starting with the letters B
through V will be type REAL.

IMPLICIT INTEGER(I-N) ,REAL(A-H,0-Z)
This is the default definition.

Any IMPLICIT statements must appear 1in a program
grouped with the Type and DIMENSION statements.
IMPLICIT statements must appear before any other
specification statements. If the IMPLICIT
statement appears after any Type or DIMENSION
statements, the types of the variables already
declared will not be affected.

FORTRAN-80 Reference Manual Page 44

SECTION 7

FORTRAN CONTROL STATEMENTS

FORTRAN control statements are executable statements which
affect and guide the logical flow of a FORTRAN program. The
statements in this category are as follows:

l. GO TO statements:
l. Unconditional GO TO

2 Computed GO TO

.

3. Assigned GO TO

2. ASSIGN
3. IF statements:
1. Arithmetic IF

2. Logical IF

4. DO

5. CONTINUE

6. STOP
7. PAUSE
8. CALL
9. RETURN
10. END

When statement labels of other statements are a part of a
control statement, such statement labels must be associated
with executable statements within the same program wunit in
which the control statement appears.

FORTRAN-80 Reference Manual Page 45

GO TO STATEMENTS

UNCONDITIONAL GO TO

Unconditional GO TO statements are wused whenever
control 1is to be transferred unconditionally to
some other statement within the program unit.

The statement is of the following form:
GO TO k

where k is the statement 1label of an executable
statement in the same program unit.

Example:

GO TO 376
310 A(7) = V1 -A(3)

376 A(2) =VECT
GO TO 310

In these statements, statement 376 is ahead of
statement 310 in the logical flow of the program of
which they are a part.

FORTRAN-80 Reference Manual Page 46

7.1.

2

COMPUTED GO TO
Computed GO TO statements are of the form:
GO TO (kl,k2,...,n),3

where the ki are statement labels, and Jj 1is an
integer variable, 1 < j < n.

This statement causes transfer of control to the
statement labeled kj. If j <1 or j > n, control
will be passed to the next statement following the
Computed GOTO.

Example:
J=3

Go T©O(7, 70, 700, 7000, 70000), J
310 J=5
GO TO 325

When J = 3, the computed GO TO transfers control to
statement 700. Changing J to equal 5 changes the
transfer to statement 70000. Making J = 0 or J = 6
would cause control to be transferred to statement
310.

FORTRAN-80 Reference Manual Page 47

7.1.3

ASSIGNED GO TO

Assigned GO TO statements are of the following
form:

GO TO j,(kl,k2,...,kn)
or

GOTO J

where J is an integer variable name, and the ki are
statement labels of executable statements. This
statement causes transfer of control to the
statement whose label is equal to the current value
of J.

Qualifications

1. The ASSIGN statement must logically precede an
assigned GO TO.

2. The ASSIGN statement must assign a value to J
which is a statement label included in the list
of k's, if the list is specified.

Example:
GO TO LABEL, (80,90, 100)

Only the statement labels 80, 90 or 100 may be
assigned to LABEL.

FORTRAN-80 Reference Manual Page 48

7.2

ASSIGN STATEMENT

This statement is of the following form:
ASSIGN j TO i

where j is . a statement 1label of an executable
statement and i is an integer variable.

The statement is used in conjunction with each
assigned GO TO statement that contains the integer
variable i. When the assigned GO TO is executed,
control will be transferred to the statement
labeled j.

Example:
ASSIGN 100 TO LABEL

ASSIGN 90 TO LABEL
GO TO LABEL, (80,90,100)

FORTRAN-80 Reference Manual Page 49

7.3 IF STATEMENT

IF statements transfer control to one of a series
of statements depending upon a condition. Two
types of IF statements are provided:

Arithmetic IF
Logical IF

7.3.1 ARITHMETIC IF

The arithmetic IF statement is of the form:
IF(e) ml,m2,m3

where e is an arithmetic expression and ml, m2 and
m3 are statement labels.

Evaluation of expression e determines one of three
transfer possibilities:

If e is: Transfer to:
< 0 ml
=0 m2
>0 m3

Examples:

Statement Expression Value Transfer to
IF (A)3,4,5 15 5
IF (N-1)50,73,9 0 73

IF (AMTX(2,1,2))7,2,1 -256 7

FORTRAN-80 Reference Manual Page 50

7.3.2

LOGICAL IF
The Logical IF statement is of the form:
IF (u)s

where u is a Logical expression and s 1is any
executable statement except a DO statement (see
7.4) or another Logical IF statement. The Logical
expression u is evaluated as .TRUE. or .FALSE.
Section 4 contains a discussion of Logical
expressions.

Control Conditions:

If u is FALSE, the statement s is ignored and
control goes to the next statement following the
Logical IF statement. If, however, the expression
is TRUE, then control goes to the statement s, and
subsequent program control follows normal
conditions.

If s is a replacement statement (v = e, Section 5),
the variable and equality sign (=) must be on the
same line, either immediately following IF(u) or on

a separate continuation line with the line spaces
following IF(u) left blank. See example 4 below.

Examples:
l. IF(I.GT.20) GO TO 115

2. IF(Q.AND.R) ASSIGN 10 TO J
3. IF(Z) CALL DECL(A,B,C)
4. IF(A.OR.B.LE.PI/2)I=J

5. IF(A.OR.B.LE.PI/2)
X I =J

FORTRAN-80 Reference Manual Page 51

7.4

DO STATEMENT

The DO statement, as implemented in FORTRAN,
provides a method for repetitively executing a
series of statements. The statement takes of one
of the two following forms:

1) DOk i = ml,m2,m3
or
2) DO k i = ml,m2

where k is a statement label, i is an integer or
logical wvariable, and ml, m2 and m3 are integer
constants or integer or logical variables.

If m3 is 1, it may be omitted as in 2) above.

The following conditions and restrictions govern
the use of DO statements:

1. The DO and the first comma must appear on the
initial line.

2. The statement labeled k, called the terminal
statement, must be an executable statement.

3. The terminal statement must physically follow
its associated DO, and the executable
statements following the DO, up to and
including the terminal statement, constitute
the range of the DO statement.

4. The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOP, PAUSE or another DO.

5. If the terminal statement is a logical IF and
its expression is .FALSE., then the statements
in the DO range are reiterated.

If the expression is .TRUE., the statement of
the logical IF 1is executed and then the
statements in the DO range are reiterated. The
statement of the logical IF may not be a GO TO,
Arithmetic IF, RETURN, STOP or PAUSE.

6. The controlling integer variable, i, is called
the index of the DO range. The index must be
positive and may not be modified by any
statement in the range.

7. If ml, m2, and m3 are Integer*l variables or
constants, the DO loop will execute faster and
be shorter, but the range is 1limited to 127

FORTRAN-80 Reference Manual Page 52

iterations. For example, the loop overhead for
a DO loop with a constant 1limit and an
increment of 1 depends upon the type of the
index variable as follows:

Index Variable Overhead

Type Microseconds Bytes
INTEGER*2 35.5 19
INTEGER*1 24 14

8. During the first execution of the statements in
the DO range, i 1is equal to ml; the second
execution, i = ml+m3; the third, i=ml+2*m3,
etc., until i is equal to the highest value in
this sequence less than or equal to m2, and
then the DO is said to be satisfied. The
statements in the DO range will always be
executed at least once, even if ml < m2.

When the DO has been satisfied, control passes
to the statement following the terminal
statement, otherwise control transfers back to
the first executable statement following the DO

statement.
Example:
The following example computes
100
?igma Ai where a is a one-dimensional array

100 DIMENSION A(100)

SUM = A(1l)
DO 31 I = 2,100
31 SUM =SUM + A(I)

END

FORTRAN-80 Reference Manual

9.

10.

11.

Page 53

The range of a DO statement may be extended to
include all statements which may logically be
executed between the DO and its terminal
statement. Thus, parts of the DO range may be
situated such that they are not physically
between the DO statement and its terminal
statement but are executed logically in the DO
range. This is called the extended range.

Example:
DIMENSION A(500), B(500)

DO 50 1 = 10, 327, 3
IF (V7 -C*C) 20,15,31
30 .
50 A(I) = B(I) + C
20 C=C - .05
GO TO 50
31 C=C+ .0125
GO TO 30
It is invalid to transfer control into the

range of a DO statement not itself in the range
or extended range of the same DO statement.

Within the range of a DO statement,
be other DO statements, in which case the DO's
must be nested. That is, if the range of one
DO contains another DO, then the range of the
inner DO must be entirely included in the range
of the outer DO.

there may

The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

FORTRAN-80 Reference Manual Page 54

For example, given a two dimensional array A of
15 rows and 15 columns, and a 15 element
one-dimensional array B, the following
statements compute the 15 elements of array C
to the formula:

15
Ck =Sigma AkjBm, k =1,2,...,15
j=1

DIMENSION A(15,15), B(15), C(15)

DO 80 K =1,15
C(K) = 0.0
Do 80 J=1,15
80 C(K) = C(K) +A(K,J) * B(J)

CONTINUE STATEMENT

CONTINUE is classified as an executable statement.
However, 1its execution does nothing. The form of
the CONTINUE statement is as follows:

CONTINUE

CONTINUE 1is frequently used as the terminal
statement in a DO statement range when the
statement which would normally be the terminal
statement is one of those which are not allowed or
is only executed conditionally.

Example:
DO S K=1,10

IF (C2) 5,6,6
6 CONTINUE

C2 = C2 +.005
5 CONTINUE

FORTRAN-80 Reference Manual Page 55

7.6

STOP STATEMENT

A STOP statement has one of the following forms:
STOP
or
STOP c
where ¢ is any string of one to six characters.
When STOP is encountered during execution of the
object program, the characters c¢ (if present) are
displayed on the operator control console and

execution of the program terminates.

The STOP statement, therefore, constitutes the
logical end of the program.

PAUSE STATEMENT

A PAUSE statement has one of the following forms:
PAUSE
or
PAUSE c

where c is any string of up to six characters.

When PAUSE is encountered during execution of the
object program, the characters c (if present) are
displayed on the operator control console and
execution of the program ceases.

The decision to continue execution of the program
is not under control of the program. If execution
is resumed through intervention of an operator
without otherwise changing the state of the
processor, the normal execution sequence, following
PAUSE, is continued.

Execution may be terminated by typing a "T" at the
operator console. Typing any other character will
cause execution to resume.

FORTRAN-80 Reference Manual Page 56

7.8

7.9

CALL STATEMENT

CALL statements control transfers into SUBROUTINE
subprograms and provide parameters for use by the
subprograms. The general forms and detailed
discussion of CALL statements appear in Section 9,
FUNCTIONS AND SUBPROGRAMS.

RETURN STATEMENT

The form, use and interpretation of the RETURN
statement is described in Section 9.

END STATEMENT

The END statement must physically be the last
statement of any FORTRAN program. It has the
following form:

END

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit routine
SEX, which returns control to the operating system.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

FORTRAN-80 Reference Manual Page 57

SECTION 8

INPUT / OUTPUT

FORTRAN provides a series of statements which define the
control and conditions of data transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, disk, 1line printer, punched card
processors, keyboard printers, etc.

These statements are grouped as follows:
l. Formatted READ and WRITE statements which cause

formatted information to be transmitted between the
computer and I/0 devices.

2. Unformatted READ and WRITE statements which
transmit unformatted binary data in a form similar
to internal storage.

3. Auxiliary I/O0 statements for positioning and
demarcation of files.

4. ENCODE and DECODE statements for transferring data
between memory locations.

5. FORMAT statements used in conjunction with
formatted record transmission to provide data
conversion and editing information between internal
data representation and external character string
forms.

FORTRAN-80 Reference Manual Page 58

FORMATTED READ/WRITE STATEMENTS

FORMATTED READ STATEMENTS

A formatted READ statement 1is used to transfer
information from an input device to the computer.

I's
forms of the statement are available, as

Two
follows:
READ (u,f,ERR=Ll,END=L2) k
or
READ (u,f,ERR=L1l,END=L2)
where:
u - specifies a Physical and Logical Unit Number

L2-

and may be either an unsigned integer or an
integer variable in the range 1 through 10. If
an Integer variable is used, an 1Integer value
must be assigned to it prior to execution of
the READ statement.

Units 1, 3, 4, and 5 are preassigned to the
console Teletypewriter. Unit 2 is preassigned
to the Line Printer (if one exists). Units
6-10 are preassigned to Disk Files (see User's
Manual, Section 3). These units, as well as
units 11-255, may be re-assigned by the user
(see Appendix B).

is the statement label of the FORMAT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in which case the formatting
information may be input to the program at the
execution time. (See Section 8.7.10)

is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
I/0 error is encountered.

is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
End-of-File is encountered.

is a list of variable names, separated by com-
mas, specifying the input data.

FORTRAN-80 Reference Manual Page 59

READ (u,f)k is used to input a number of items,
corresponding to the names in the list k, from the
file on logical unit u, and wusing the FORMAT
statement f to specify the external representation
of these items (see FORMAT statements, 8.7). The
ERR= and END= clauses are optional. If not
specified, I/0 errors and End-of-Files cause fatal
runtime errors.

The following notes further define the function of
the READ (u,f)k statement:

1. Each time execution of the READ statement
begins, a new record from the input file is
read.

2. The number of records to be input by a single
READ statement is determined by the list, k,
and format specifications.

3. The list k specifies the number of items to be
read from the input file and the locations into
which they are to be stored.

4. Any number of items may appear in a single list
and the items may be of different data types.

5. If there are more quantities in an input record
than there are items in the list, only the
number of quantities equal to the number of
items in the list are transmitted. Remaining
quantities are ignored.

6. Exact specifications for the 1list k are
described in 8.6.

Examples:

1. Assume that four 1Integer data entries are
stored in a sequential disk file and that the
values have field widths of 3, 4, 2 and 5
respectively. The statements

READ(5,20)K,L,M,N
20 FORMAT(I3,I4,I2,1I5)

will read the file and assign the input data to
the variables K, L, M and N.

See 8.7 for complete description of FORMAT
statements.

FORTRAN-80 Reference Manual Page 60

2. Input the quantities of an array (ARRY):
READ(6,21) ARRY

Only the name of the array needs to appear in
the 1list (see 8.6). All elements of the array
ARRY will be read and stored using the

appropriate formatting specified by the FORMAT
statement labeled 21.

READ (u,k) may be used in conjunction with a FORMAT
statement to read H-type alphanumeric data into an
existing H-type field (see Hollerith Conversions,
8.7-3) .

For example, the statements

READ(I,25)

25 FORMAT (10HABCDEFGHIJ)

cause the next 10 characters of the file on input
device I to be read and replace the characters
ABCDEFGHIJ in the FORMAT statement.

FORTRAN-80 Reference Manual Page 61

8.1.2

FORMATTED WRITE STATEMENTS

A formatted WRITE statement is used to transfer
information from the computer to an output device.

Two forms of the statement are available, as
follows:

WRITE(u, £f,ERR=L1 ,END=L2) k

or

WRITE (u,f,ERR=L1l,END=L2)
where:
u - specifies a Logical Unit Number.

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used with the output transmission.

Ll1- specifies an I/0 error branch.
L2- specifies an EOF branch.

k - is a list of variable names separated by com-
mas, specifying the output data.

WRITE (u,f)k is used to output the data specified
in the list k to a file on logical unit u using the
FORMAT statement £ to specify the external
representation of the data (see FORMAT statements,
8.7). The following notes further define the
function of the WRITE statement:

1. Several records may be output with a single
WRITE statement, with the number determined by
the list and FORMAT specifications.

2. Successive data are output until the data
specified in the list are exhausted.

3. If output is to a device which specifies fixed
length records and the data specified in the
list do not £ill the record, the remainder of
the record is filled with blanks.

Example:
WRITE(2,10)A,B,C,D

The data assigned to the variables A, B, C and D
are output to Logical Unit Number 2, formatted
according to the FORMAT statement labeled 10.

FORTRAN-80 Reference Manual Page 62

WRITE(u,f) may be wused to write alphanumeric
information when the characters to be written are
specified within the FORMAT statement. In this
case a variable list is not required.

For example, to write the characters 'H CONVERSION'
on unit 1,

WRITE(1,26)

26 FORMAT ('H CONVERSION')

8.2 UNFORMATTED READ/WRITE

Unformatted I/0 (i.e. without data conversion) 1is
accomplished using the statements:

READ (u, ERR=L1,END=L2) k
WRITE (u,ERR=Ll,END=L2) k
where:

u - specifies a Logical Unit Number.
L1- specifies an I/0 error branch.
L2~ specifies an EOF branch.

k - is a list of variable names, separated by
commas, specifying the I/O data.

The following notes define the functions of
unformatted I/0 statements.

l. Unformatted READ/WRITE statements perform
memory—-image transmission of data with no data
conversion or editing.

2. The amount of data transmitted corresponds to
the number of variables in the list k.

3. The total length of the list of variable names
in an unformatted READ must not be longer than
the record length. If the logical record
length and the length of the list are the same,
the entire record is read. If the 1length of
the 1list 1is shorter than the logical record
length the wunread items in the record are
skipped.

FORTRAN-80 Reference Manual Page 63

4. The WRITE(a)k statement writes one 1logical
record.

5. A logical record may extend across more than
one physical record.

8.3 DISK FILE I/0

A READ or WRITE to a disk file (LUN 6-10)
automatically OPENs the file for I/O. The file
remains open until closed by an ENDFILE command
(see Section 8.4) or until normal program
termination.

NOTE

Exercise caution when doing sequential
output to disk files. 1If output is done to
an existing file, the existing file will be
deleted and replaced with a new file of the
same name.

8.3.1 RANDOM DISK 1/0

SEE ALSO SECTION 3 OF YOUR MICROSOFT FORTRAN USER'S
MANUAL.

For random disk access, the record number is
specified by using the REC=n option in the READ or
WRITE statement. For example:

I =10
WRITE (6,20,REC=I,ERR=50) X, Y, 2

This program segment writes record 10 on LUN 6. If
a previous record 10 exists, it is written over.
If no record 10 exists, the file is extended to
create one. Any attempt to read a non-existent
record results in an I/0O error.

FORTRAN-80 Reference Manual Page 64

8.3.2 OPEN SUBROUTINE

Alternatively, a file may be OPENed using the OPEN
subroutine. LUNs 1-5 may also be assigned to disk
files with OPEN. The OPEN subroutine allows the
program to specify a filename and device to be
associated with a LUN.

An OPEN of a non-existent file creates a null file
of the appropriate name. An OPEN of an existing
file followed by sequential output deletes the
existing file. An OPEN of an existing file
followed by an input allows access to the current
contents of the file.

The form of an OPEN call varies under different

operating systems. See your Microsoft FORTRAN
User's Manual, Section 3.

8.4 AUXILIARY I/0 STATEMENTS

Three auxiliary I/O statements are provided:

BACKSPACE u
REWIND u
ENDFILE u

The actions of all three statements depend on the
LUN with which they are used (see Appendix B).
When the LUN is for a terminal or line printer, the
three statements are defined as no-ops.

When the LUN is for a disk drive, the ENDFILE and
REWIND commands allow further program control of
disk files. ENDFILE u closes the file associated
with LUN u. REWIND u closes the file associated
with LUN u, then opens it again. BACKSPACE is not
implemented at this time, and therefore causes an
error if used.

FORTRAN-80 Reference Manual Page 65

8.5

8.6

ENCODE /DECODE

ENCODE and DECODE statements transfer data,
according to format specifications, from one
section of memory to another. DECODE changes data
from ASCII format to the specified format. ENCODE
changes data of the specified format into ASCII
format. The two statements are of the form:

ENCODE(a,f) k
DECODE(a,f) k

where:

a is an array name
f is FORMAT statement number
k is an I/0 List

DECODE is analogous to a READ statement, since it
causes conversion from ASCII to internal format.
ENCODE is analogous to a WRITE statement, causing
conversion from internal formats to ASCII.

NOTE

Care should be taken that the array A is
always large enough to contain all of the
data being processed. There 1is no check
for overflow. An ENCODE operation which
overflows the array will probably wipe out
important data following the array. A
DECODE operation which overflows will
attempt to process the data following the
array.

INPUT/OUTPUT LIST SPECIFICATIONS

Most forms of READ/WRITE statements may contain an
ordered 1list of data names which identify the data
to be transmitted. The order in which the 1list
items appear must be the same as that in which the
corresponding data exists (Input), or will exist
(Output) in the external I/O0 medium.

Lists have the following form:

ml,m2,...,mn

-

where the mi are list items separated by commas, as
shown.

FORTRAN-80 Reference Manual Page 66

8.6.1 LIST ITEM TYPES

A list item may be a single datum identifier or a
multiple data identifier.

1.

A single datum identifier item is the name of a
variable or array element.

Examples:

A
C(26;1) IRIKI’D
B,I(10,10),S,F(1,25)

NOTE

Sublists are not implemented.

Multiple data identifier items are in two
forms:

a. An array name appearing in a 1list without
subscript(s) 1is considered equivalent to the
listing of each successive element of the
array.

Example:

If B is a two dimensional array, the list item
B 1is equivalent to: B(l1,1),B(2,1),B(3,1)....,
B(1,2),B(2,2)...,B(j,k).

where j and k are the subscript limits of B.

b. DO-implied items are lists of one or more
single datum identifiers or other DO-implied
items followed by a comma character and an
expression of the form:

i =ml,m2,m3 or i = ml,m2
and enclosed in parentheses.
The elements i,ml,m2,m3 have the same meaning
as defined for the DO statement. The DO

implication applies to all list items enclosed
in parentheses with the implication.

FORTRAN-80 Reference Manual Page 67

Examples:

DO-Implied Lists Equivalent Lists
(X(I),I=1,4) X(1),X(2) ,X(3),X(4)
(Q(J) ,R(J) ,J=1,2) Q(1) ,R(1),Q(2) ,R(2)
(G(K) ,K=1,7,3) G(1l),G(4),G(7)

((a(1,J),1=3,5),J=1,9,4) A(3,1) ,A(4,1),A(5,])
A(3,5),A(4,5) ,A(5,5)
A(3,9),A(4,9),A(5,9)

(R(M) ,M=1,2),1I,ZAP(3) R(1) ,R(2),I,ZAP(3)
(R(3),T(I),I=1,3) R(3),T(1),R(3),T(2),
R(3) ,T(3)

Thus, the elements of a matrix, for example,
may be transmitted in an order different from
the order in which they appear in storage. The
array A(3,3) occupies storage in the order
A(l,1),A(2,1), A(3,1),A(1,2),A(2,2),A(3,2),
A(l,3),A(2,3),A(3,3). By specifying the
transmission of the array with the DO-implied
list item ((A(I,J),J=1,3),I=1,3), the order of
transmission is:
A(1,1),A(1,2),A(1,3),A(2,1),A(2,2),
A(2,3),A(3,1),A(3,2),A(3,3)

8.6.2 SPECIAL NOTES ON LIST SPECIFICATIONS

1. The ordering of a list is from left to right
with repetition of items enclosed in
parentheses (other than as subscripts) when
accompanied by controlling DO-implied index
parameters.

2. Arrays are transmitted by the appearance of the
array name (unsubscripted) in an input/output
list.

3. Constants may appear in an input/output 1list
only as subscripts or as indexing parameters.

4. For input lists, the DO-implying elements 1,
ml, m2 and m3 may not appear within the
parentheses as list items.

Examples:

1. READ (1,20) (I,J,A(I),I=1,J,2) is not allowed

2. READ(1,20)I,J,(A(I),I=1,J,2) is allowed

FORTRAN-80 Reference Manual Page 68

3. WRITE(1,20)(I,J,A(I),I=1,J,2) 1is allowed
Consider the following examples:

DIMENSION A(25)

A(l) = 2.1
A(3) = 2.2
A(5) = 2.3
J =5

WRITE (1,20) J,(I,A(I),I=1,J,2)

the output of this WRITE statement is
5,1,2.1,3,2.2,5,2.3

1. Any number of items may appear in a single
list.

2. In a formatted transmission (READ(u,£f)k,

WRITE(u,f)k) each item must have the correct
type as specified by a FORMAT statement.

FORMAT STATEMENTS

FORMAT statements are non-executable, generative
statements used in conjunction with formatted READ
and WRITE statements. They specify conversion
methods and data editing information as the data is
transmitted between computer storage and external
media representation.

FORMAT statements require statement labels for
reference (f) in the READ(u,f)k or WRITE(u,f)k
statements.

The general form of a FORMAT statement is as
follows:

m FORMAT (sl,s2,...,sn/sl',s2',...,sn'/...)

where m is the statement label and each si is a
field descriptor. The word FORMAT and the
parentheses must be present as shown. The slash
(/) and comma (,) characters are field separators
and are described in a separate subparagraph. The
field is defined as that part of an external record
occupied by one transmitted item.

FORTRAN-80 Reference Manual Page 69

8.7.1

FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields
and specify the type of conversion to be exercised
upon each transmitted datum. The FORMAT field
descriptors may have any of the following forms:

Descriptor Classification

rFw.d

rGw.d

rEw.d Numeric Conversion
rDw.d

riw

rLw Logical Conversion
rAw

nAhlh2...hn Hollerith Conversion
'1112...1n°

nX Spacing Specification
mP Scaling Factor
where:

1. w and n are positive integer constants defining
the field width (including digits, decimal
points, algebraic signs) in the external data
representation.

2. d is an integer specifying the number of
fractional digits appearing in the external
data representation.

3. The characters F, G, E, D, I, A and L indicate
the type of conversion to be applied to the
items in an input/output list.

4. r is an optional, non-zero integer indicating
that the descriptor will be repeated r times.

5. The hi and 1li are characters from the FORTRAN
character set.

6. m is an integer constant (positive, negative,
or zero) indicating scaling.

FORTRAN-80 Reference Manual Page 70

8.7.2

NUMERIC CONVERSIONS

Input operations with any of the numeric
conversions will allow the data to be represented
in a "Free Format"; i.e., commas may be used to
separate the fields in the external representation.

F-type conversion

Form: Fw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which 4 are considered fractional.

F-output

Values are converted and output as minus sign (if
negative), followed by the integer portion of the
number, a decimal point and 4 digits of the
fractional portion of the number. If a value does
not fill the field, it is right Jjustified in the
field and enough preceding blanks to £ill the field
are inserted. If a value requires more field
positions than allowed by w, the first w-1 digits
of the value are output, preceded by an asterisk.

F-Output Examples:

FORMAT Internal Output
Descriptor Value (b=blank)
F10.4 368.42 bb368.4200
F7.1 -4786.361 -4786.4
F8.4 8.7E-2 bb0.0870
F6.4 4739.76 *,7600
F7.3 -5.6 b-5.600

* Note the loss of leading digits in the 4th 1line
above.

F-Input
(See the description under E-Input below.)

E-type Conversion

Form: Ew.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

FORTRAN-80 Reference Manual Page 71

E-Output

Values are converted, rounded to 4 digits, and
output as:

1. a minus sign (if negative),

2. a zero and a decimal point,

3. d decimal digits,

4, the letter E,

5. the sign of the exponent (minus or blank),

6. two exponent digits,

in that order. The values as described are right
justified in the field w with preceding blanks to
fill the field if necessary. The field width w
should satisfy the relationship:

w>d + 7

Otherwise significant characters may be lost. Some
E-Output examples follow:

FORMAT Internal Output
Descriptor Value (b=blank)
El2.5 76.573 bb.76573Eb02
El4.7 -32672.354 -b.3267235Eb05
E13.4 -0.0012321 bb-b.1232E-02
E8.2 76321.73 b.76Eb05
E-Input

Data values which are to be processed under E, F,
or G conversion can be a relatively loose format in
the external input medium. The format is identical
for either conversion and is as follows:

1. Leading spaces (ignored)

2. A + or - sign (an unsigned input is assumed to
be positive)

3. A string of digits
4. A decimal point

5. A second string of digits

FORTRAN-80 Reference Manual Page 72

6. The character E
7. A + or - sign
8. A decimal exponent

Each item in the list above is optional; but the
following conditions must be observed:

l. 1If FORMAT items 3 and 5 (above) are present,
then 4 is required.

2. If FORMAT item 8 is present, then 6 or 7 or
both are required.

3. All non-leading spaces are considered zeros.
Input data can be any number of digits in 1length,
and correct magnitudes will be developed, but
precision will be maintained only to the extent
specified in Section 3 for Real data.

E- and F- and G- Input Examples:

FORMAT Input Internal
Descriptor (b=blank) Value
E10.3 +0.23756+4 +2375.60
E10.3 bbbbbl7631 +17.631
G8.3 bl1628911 +1628.911
Fl2.4 bbbb-6321132 -632.1132

Note in the above examples that if no decimal point
is given among the input characters, the 4 in the
FORMAT specification establishes the decimal point
in conjunction with an exponent, if given. If a
decimal point is included in the input characters,
the d specification is ignored.

The letters E, F, and G are interchangeable in the

input format specifications. The end result is the
same.

D-Type Conversions

D-Input and D-Output are identical to E-Input and
E-Output except the exponent may be specified with
a "D" instead of an "E." :

FORTRAN-80 Reference Manual Page 73

G-Type Conversions

Form: Gw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which 4 are considered significant.

G-Input:

(See the description under E-Input)

G-Output:

The method of output conversion is a function of
the magnitude of the number being output. Let n be

the magnitude of the number. The following table
shows how the number will be output:

Magnitude Equivalent Conversion
l <=n < 10 F(w-4) . (d-1) ,4X
| d-2 d-1
10 <=n < 10 F(w-4).1,4X
d-1 d
10 <=n < 10 F(w-4) .0,4X
Otherwise Ew.d

I-Conversions

Form: Iw

Only Integer data may be converted by this form of
conversion. w specifies field width.

I-Output:

Values are conver ted to Integer constants.
Negative values are preceded by a minus sign. 1If
the value does not fill the field, it is right
justified in the field and enough preceding blanks
to £ill the field are inserted. If the wvalue
exceeds the field width, only the least significant
w-1l characters are output preceded by an asterisk.

FORTRAN-80 Reference Manual

Examples:

FORMAT
Descriptor

16
I6
I3
I4

I-Input:

A field of w characters is input and
integer format.
the integer digits.
value is considered positive.

internal

Integer values in the range

accepted.

Examples:

Format
Descriptor

I4
I4
17
I4

Internal
Value

+281
-23261
126
-226

Input

(b=blank)

bl24
-124
bb6732b
1b2b

HOLLERITH CONVERSIONS

A-Type Conversion

The form of the A conversion is as follows:

Aw

This descriptor
characters

specified list item.

causes
be read

Output
(b=blank)

bbb281
-23261
126
-226

-32768 to
Non-leading spaces are treated as zeros.

Internal
Value

124
-124
67320
1020

unmodified
or written

The maximum number of actual characters

be transmitted

between internal

representations using Aw is four times

of storage

units in

(i.e., 1 character for logical items, 2

for Integer items,

A-Output:

If w is greater than 4n (where n is the

storage units

required by

the 1list

converted
A minus sign may precede
If a sign is not present,

32767

and

number
item),

Page 74

to

the

are

Hollerith

from a

which may
external

number

the corresponding list item
characters
4 characters for Real items and
8 characters for Double Precision items).

of
the

FORTRAN-80 Reference Manual Page 75

external output field will consist of w-4n blanks
followed by the 4n characters from the internal
representation. If w is less than 4n, the external
output field will consist of the leftmost w
characters from the internal representation.

Examples:
Format Internal Type Output
Descriptor (b=blanks)
Al Al Integer A
A2 AB Integer AB
A3 ABCD Real ABC
A4 ABCD Real ABCD
A7 ABCD Real bbbABCD
A-Input:

If w is greater than 4n (where n is the number of
storage units required by the corresponding list
item), the rightmost 4n characters are taken from
the external input field. If w is less than 4n,
the w characters appear left Jjustified with w-4n
trailing blanks in the internal representation.

Examples:

Format Input Type Internal
Descriptor Characters (b=blank)
Al A Integer Ab
A3 ABC Integer AB
A4 ABCD Integer AB
Al A Real Abbb
A7 ABCDEFG Real DEFG

H-Conversion

The forms of H conversion are as follows:
nHhlh2...hn
'hlh2...hn'

These descriptors process Hollerith character
strings between the descriptor and the external
field, where each hi represents any character from
the ASCII character set.

FORTRAN-80 Reference Manual Page 76

NOTE

Special consideration 1is required if an
apostrophe (') is to be used within the
literal string in the second form. An
apostrophe character within the string is
represented by two successive apostrophes.
See the examples below.

H-Output:

The n characters hi, are placed in the external
field. In the nHhlh2...hn form the number of
characters in the string must be exactly as
specified by n. Otherwise, characters from other
descriptors will be taken as part of the string.
In both forms, blanks are counted as characters.

Examples:

Format Output

Descriptor (b=blank)
1HA or 'A! A
8HbSTRINGD or 'bSTRINGD' bSTRINGD
11HX(2,3)=12.0 or 'X(2,3)=12.0" X(2,3)=12.0
11HIbSHOULDN'T or 'IbSHOULDN''T' IbSHOULDN'T
H-Input

The n characters of the string hi are replaced by
the next n characters from the input record. This
results in a new string of characters in the field
descriptor.

FORMAT Input Resultant

Descriptor (b=blank) Descriptor
4H1234 or '1234' ABCD 4HABCD or 'ABCD'
7HbbFALSE or 'bbFALSE' bFALSED 7HbFALSEb or 'bFALSED'
6Hbbbbbb or 'bbbbbb' MATRIX 6HMATRIX or 'MATRIX'

8.7.4 LOGICAL CONVERSIONS

The form of the logical conversion is as follows:
Lw
L-Output:

If the wvalue of an item in an output list

FORTRAN-80 Reference Manual Page 77

corresponding to this descriptor is 0, an F will be

output; otherwise, a T will be output. If w |is
greater than 1, w-1 leading blanks precede the
letters.

Examples:

FORMAT Internal Output
Descriptor Value (b=blank)

Ll =0 F

L1l <>0 T

L5 <>0 bbbbT

L7 =0 bbbbbbF
L-Input

The external representation occupies w positions.
It consists of optional blanks followed by a "T" or
"F", followed by optional characters.

8.7.5 X DESCRIPTOR

The form of X conversion is as follows:

nX

This descriptor causes no conversion to occur, nor
does it <correspond to an item in an input/output
list. When used for output, it causes n blanks to
be inserted in the output record. Under input
circumstances, this descriptor causes the next n
characters of the input record to be skipped. Note
that 1X is required, as X alone will not work.

OQutput Examples:

FORMAT Statement Output
(b=blank)

3 FORMAT (1HA,4X,2HBC) AbbbbBC

7 FORMAT (3X,4HABCD,1X) bbbABCDb

Input Examples:

FORMAT Statement Input String Resultant Input

10 FORMAT (F4.1,3X,F3.0) 12.5ABC120 12.5,120
5 FORMAT (7X,I3) 1234567012 012

FORTRAN-80 Reference Manual Page 78

8.7.6 P DESCRIPTOR

The P descriptor is wused to specify a scaling
factor for real conversions (F, E, D, G). The form
is nP where n is an integer constant (positive,
negative, or zero).

The scaling factor is automatically set to zero at
the beginning of each formatted I/0O call (each READ
or WRITE statement). If a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
changed until another P descriptor is encountered
or the I/0 terminates.

Effects of Scale Factor on Input:

During E, F, or G input the scale factor takes
effect only if no exponent 1is present in the
external representation. In that case, the
internal value will be a factor of 10**n less than
the external value (the number will be divided by
10**n before being stored).

Effect of Scale Factor on Qutput:

E-Output, D-Output:

The coefficient is shifted left n places relative
to the decimal point, and the exponent is reduced
by n (the value remains the same).

F-Output:

The external value will be 10**n times the internal
value.

G-Output:
The scale factor is ignored if the internal value

is small enough to be output using F conversion.
Otherwise, the effect is the same as for E output.

FORTRAN-80 Reference Manual Page 79

8.7.7 SPECIAL CONTROL FEATURES OF FORMAT STATEMENTS

8.7.7.1 Repeat Specifications

1.

The E, F, D, G, I, L and A field descriptors
may be indicated as repetitive descriptors by
using a repeat count r in the form rEw.d,
rFw.d, rGw.d, rIw, rLw, rAw. The following
pairs of FORMAT statements are equivalent:

66 FORMAT (3F8.3,F9.2)
C IS EQUIVALENT TO:
66 FORMAT (F8.3,F8.3,F8.3,F9.2)

14 FORMAT (2I3,2A5,2E10.5)
C IS EQUIVALENT TO:
14 FORMAT (I3,I3,A5,A5,E10.5,E10.5)

Repetition of a group of field descriptors 1is
accomplished by enclosing the group 1in
parentheses preceded by a repeat count.
Absence of a repeat count indicates a count of
one. Up to two levels of parentheses,
including the parentheses required by the
FORMAT statement, are permitted.

Note the following equivalent statements:

22 FORMAT (I3,4(F6.1,2X))
C IS EQUIVALENT TO:
22 FORMAT (I3,F6.1,2X,F6.1,2X,F6.1,2X,
1 F6.1,2X)

Repetition of FORMAT descriptors is also
initiated when all descriptors in the FORMAT
statement have been used but there are still
items in the input/output list that have not
been processed. When this occurs the FORMAT
descriptors are re-used starting at the first
opening parenthesis in the FORMAT statement. A
repeat count preceding the parenthesized
descriptor(s) to be re-used is also active in
the re-use. This type of repetitive use of
FORMAT descriptors terminates processing of the
current record and initiates the processing of
a new record each time the re-use begins.
Record demarcation under these circumstances is
the same as in the paragraph 8.7.7.2 below.

FORTRAN-80 Reference Manual Page 80

8.7.7.2

Input Example:

DIMENSION A(100)
READ (3,13) A

13 FORMAT (5F7.3)

In this example, the first 5 quantities from each
of 20 records are input and assigned to the array
elements of the array A.

Output Example:

WRITE (6,12)E,F,K,L,M,KK,LL,MM,K3,L3,M3

12 FORMAT (2F9.4,3(317,/))

In this example, three records are written. Record
1 contains E, F, K, L and M. Because the
descriptor 317 is reused twice, Record 2 contains
KK, LL and MM and Record 3 contains K3, L3 and M3.

Field Separators

Two adjacent descriptors must be separated in the
FORMAT statement by either a comma or one Or more
slashes.

Example:
2HOK/F6.3 or 2HOK,F6.3

The slash not only separates field descriptors, but
it also specifies the demarcation of formatted
records.

Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignored; the remainder of an output
record is filled with blanks. Successive slashes
(///.../) cause successive records to be ignored on
input and successive blank records to be written on
output.

FORTRAN-80 Reference Manual Page 81

Output example:
DIMENSION A(100) ,J(20)

WRITE (7,8) J,A
8 FORMAT (1017/1017/50F7.3/50F7.3)

In this example, the data specified by the list of
the WRITE statement are output to unit 7 according
to the specifications of FORMAT statement 8. Four
records are written as follows:

Record 1 Record 2 Record 3 Record 4
J(1) J(11) A(l) A(51)
J(2) J(12) A(2) A(52)
J(10) J(20) A(50) A(100)

Input Example:

DIMENSION B(10)

READ (4,17) B
17 FORMAT(F10.2/F10.2///8F10,2)

In this example, the two array elements B(l) and
B(2) receive their wvalues from the first data
fields of successive records (the remainders of the
two records are ignored). The third and fourth
records are ignored and the remaining elements of
the array are filled from the fifth record.

8.7.8 FORMAT CONTROL, LIST SPECIFICATIONS AND RECORD
DEMARCATION

The following relationships and interactions
between FORMAT control, input/output 1lists and
record demarcation should be noted:

1. Execution of a formatted READ or WRITE
statement initiates FORMAT control.

2. The conversion performed on data depends on
information jointly provided by the elements in
the input/output list and field descriptors in
the FORMAT statement.

FORTRAN-80 Reference Manual Page 82

3.

If there is an input/output list, at least one
descriptor of types E, F, D, G, I, L or A must
be present in the FORMAT statement.

Each execution of a formatted READ statement
causes a new record to be input.

Each item in an input 1list corresponds to a
string of characters in the record and to a
descriptor of the types E, F, G, I, L or A in
the FORMAT statement.

H and X descriptors communicate information
directly between the external record and the
field descriptors without reference to 1list
items.

On input, whenever a slash is encountered in
the FORMAT statement or the FORMAT descriptors
have been exhausted and re-use of descriptors
is initiated, processing of the current record
is terminated and the following occurs:

a. Any unprocessed characters in the record
are ignored.

b. If more input is necessary to satisfy
list requirements, the next record is
read.

A READ statement is terminated when all items
in the input list have been satisfied if:

a. The next FORMAT descriptor is E, F, G, I,
L or A.

b. The FORMAT control has reached the last
outer right parenthesis of the FORMAT
statement.

If the input list has been satisfied, but the
next FORMAT descriptor is H or X, more data are
processed (with the possibility of new records
being input) until one of the above conditions
exists.

If FORMAT control reaches the last right
parenthesis of the FORMAT statement but there
are more list items to be processed, all or
part of the descriptors are reused. (See item
3 in the description of Repeat Specifications,
sub-paragraph 8.7.7.1)

FORTRAN-80 Reference Manual Page 83

8.7.9

8.7.10

10. When a Formatted WRITE statement is executed,
records are written each time a slash is
encountered in the FORMAT statement or FORMAT
control has reached the rightmost right
parenthesis. The FORMAT control terminates 1in
one of the two methods described for READ
termination in 8 above. Incomplete records are
filled with blanks to maintain record lengths.

FORMAT CARRIAGE CONTROL

Formatted I/0 to a console or printer uses the
first character of each record for carriage
control. The carriage control character 1is never
printed. The carriage control character determines
what action will be taken before the 1line is
printed. The options are as follows:

Control Character Action Taken Before Printing
0 Skip 2 lines
1 Insert Form Feed
+ No advance
Other Skip 1 line

Formatted I/O to disk does not require the first
character of each record to be a carriage control
character. Records are terminated by a carriage
return character (X'0OD'). There are no line-feeds
(X'0OA') 1in the file unless written there
explicitly.

FORMAT SPECIFICATIONS IN ARRAYS

The FORMAT reference, f, of a formatted READ or
WRITE statement (See 8.1) may be an array name
instead of a statement label. 1If such reference is
made, at the time of execution of the READ/WRITE
statement the first part of the information
contained in the array, taken in natural order,
must constitute a valid FORMAT specification. The
array may contain non-FORMAT information following
the right parenthesis that ends the FORMAT
specification.

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (i.e., it begins with a left parenthesis
and ends with a right parenthesis).

The FORMAT specification may be inserted in the
array by use of a DATA initialization statement, or

FORTRAN-80 Reference Manual Page 84

by use of a READ statement together with an Aw
FORMAT. Example:

Assume the FORMAT specification
(3F10.3,416)

or a similar 12 character specification is to be
stored into an array. The array must allow a
minimum of 3 storage units.

The FORTRAN coding below shows the various methods
of establishing the FORMAT specification and then
referencing the array for a formatted READ or
WRITE.

C DECLARE A REAL ARRAY
DIMENSION A(3), B(3), M(4)

C INITIALIZE FORMAT WITH DATA STATEMENT
DATA A/'(3Fl1','0.3,','416)"'/

C READ DATA USING FORMAT SPECIFICATIONS
Cc IN ARRAY A
READ(6,A) B, M

C DECLARE AN INTEGER ARRAY
DIMENSION IA(4), B(3), M(4)

C READ FORMAT SPECIFICATIONS
READ (7,15) Ia
C FORMAT FOR INPUT OF FORMAT SPECIFICATIONS
15 FORMAT (4A2)

C READ DATA USING PREVIOUSLY INPUT
C FORMAT SPECIFICATION
READ (7,IA) B,M

FORTRAN-80 Reference Manual Page 85

SECTION 9

FUNCTIONS AND SUBPROGRAMS

The FORTRAN language provides a means for defining and using
often needed programming procedures such that the statement
or statements of the procedures need appear in a program
only once but may be referenced and brought into the logical
execution sequence of the program whenever and as often as
needed.

These procedures are as follows:

1. Statement functions.
2. Library functions.
3. FUNCTION subprograms.

4. SUBROUTINE subprograms.

Each of these procedures has its own unique requirements for
reference and defining purposes. These requirements are
discussed 1in subsequent paragraphs of this section.
However, certain features are common to the whole group or
to two or more of the procedures. These common features are
as follows:

1. Each of these procedures is referenced by its name
which, in all cases, is one to six alphanumeric
characters of which the first is a letter.

2. The first three are designated as "functions" and
are alike in that:

1. They are always single valued (i.e., they
return one value to the program unit from which
they are referenced).

2. They are referred to by an expression
containing a function name.

3. They must be typed by type specification
statements if the data type of the
single-valued result is to be different from
that indicated by the pre-defined convention.

3. FUNCTION subprograms and SUBROUTINE subprograms are
considered program units.

FORTRAN-80 Reference Manual Page 86

In the following descriptions of these procedures, the term
calling program means the program unit or procedure in which
a reference to a procedure is made, and the term "called
program" means the procedure to which a reference is made.

9.1

9.2

THE PROGRAM STATEMENT

The PROGRAM statement provides a means of
specifying a name for a main program unit. The
form of the statement is:

PROGRAM name

If present, the PROGRAM statement must appear
before any other statement in the program unit.
The name consists of 1-6 alphanumeric characters,
the first of which 1is a letter. If no PROGRAM
statement 1is present in a main program, the
compiler assigns a name of $MAIN to that program.

STATEMENT FUNCTIONS

Statement functions are defined by a single
arithmetic or logical assignment statement and are
relevant only to the program unit in which they
appear. The general form of a statement function
is as follows:

f(al,a2,...an) = e

where f is the function name, the ai are dummy
arguments and e 1is an arithmetic or logical
expression.

Rules for ordering, structure and use of statement
functions are as follows:

1. Statement function definitions, if they exist
in a program unit, must precede all executable
statements in the unit and follow all
specification statements.

2. The ai are distinct wvariable names or array
elements, but, being dummy variables, they may
have the same names as variables of the same
type appearing elsewhere in the program unit.

3. The expression e is constructed according to
the rules in SECTION 4 and may contain only
references to the dummy arguments and
non-Literal constants, variable and array
element references, utility and mathematical
function references and references to
previously defined statement functions.

FORTRAN-80 Reference Manual Page 87

4. The type of any statement function name or
argument that differs from its pre-defined
convention type must be defined by a type
specification statement.

5. The relationship between f and e must conform
to the replacement rules in Section 5.

6. A statement function 1is called by its name
followed by a parenthesized list of arguments.
The expression is evaluated using the arguments
specified in the <call, and the reference is
replaced by the result.

7. The ith parameter in every argument 1list MUST
agree in type with the ith dummy in the
statement function.

The example below shows a statement function and a
statement function call.

C STATEMENT FUNCTION DEFINITION
C
FUNC1(A,B,C,D) = ((A+B)**C)/D

C STATEMENT FUNCTION CALL
Cc
Al2=A1-FUNC1(X,Y,27,C7)

LIBRARY FUNCTIONS

Library functions are a group of wutility and
mathematical functions which are "built-in" to the
FORTRAN system. Their names are pre-defined to the
Processor and automatically typed. The functions
are listed in Tables 9-1 and 9-2. 1In the tables,
arguments are denoted as al,a2,...,an, if more than
one argument is required; or as a if only one is
required. A library function is called when its
name is used in an arithmetic expression. Such a
reference takes the following form:

f(al,a2,...an)

where £ is the name of the function and the ai are
actual arguments. The arguments must agree in
type, number and order with the specifications
indicated in Tables 9-1 and 9-2.

FORTRAN-80 Reference Manual Page 88

In addition to the functions listed in 9-1 and 9-2,
four additional library subprograms are provided to
enable direct access to the 8080 (or 2Z80) hardware.
These are:

PEEK, POKE, INP, OUT

For the following:
b, bl, and b2 are BYTE constants or variables
i is an INTEGER constant or variable

PEEK and INP are Logical functions; POKE and OUT
are subroutines. PEEK and POKE allow direct access
to any memory location. PEEK(i) returns the
contents of the memory location specified by i.
CALL POKE(i,b) causes the contents of the memory
location specified by i to be replaced by the
contents of b. INP and OUT allow direct access to
the I/0 ports. INP(b) does an input from port b
and returns the 8-bit value input. CALL OUT(bl,b2)
outputs the value of b2 to the port specified by
bl.

RAN is another function in the FORTRAN library.
RAN is a random number generator that is compatible
with Microsoft's BASIC Compiler and BASIC-80
interpreter. The random number generated is a REAL
decimal number between 0 and 1. The random number
generator is called by a statement of the following
form:
<variable> = RAN(x)

If x < 0, the first value of a new sequence of
random numbers is returned.

If x = 0, the last random number generated |is
returned again.

If x > 0, the next random number in the sequence is
generated.
Examples using library functions:

Al = B+FLOAT (I7)

MAGNI = ABS (KBAR)

PDIF = DIM(C,D)

S3 = SIN(T12)

ROOT = (-B+SQRT(B**2-4.*A*C))/
1 (2.*A)

FORTRAN-80 Reference Manual

TABLE 9-1

Intrinsic Functions

Function

Name Definition

ABS EY
IABS
DABS

AINT
INT
IDINT

Sign of a times lar-
gest integer <=|al

AMOD
MOD

al (mod a2)

AMAXO0
AMAX1
MAXO0
MAX1
DMAX1

Max(al,a2,...)

AMINO
AMIN1
MINO
MIN1
DMIN1

Min(al,a2,...)

FLOAT Conversion from

Integer to Real
IFIX Conversion from
Real to Integer

SIGN
ISIGN
DSIGN

Sign of a2 times |al|

DIM
IDIM

al - Min(al,a2)

SNGL

DBLE

Page

Types
Argument Function
Real Real
Integer Integer
Double Double
Real Real
Real Integer
Double Integer
Real Real
Integer Integer
Integer Real
Real Real
Integer Integer
Real Integer
Double Double
Integer Real
Real Real
Integer Integer
Real Integer
Double Double
Integer Real
Real Integer
Real Real
Integer Integer
Double Double
Real Real
Integer Integer
Double Real
Real Double

89

FORTRAN-80 Reference Manual

TABLE 9-2

Basic External Functions

Number

of Type
Name Arguments Definition
EXP 1 ek*gy
DEXP 1
ALOG 1l 1n (a)
DLOG 1
ALOGl10 1 logl0(a)
DLOG10 1
SIN 1 sin (a)
DSIN 1
Ccos 1 cos (a)
DCOS 1
TANH 1l tanh (a)
SQRT 1 (a) ** 1/2
DSQRT 1
ATAN 1 arctan (a)
DATAN 1l
ATAN2 2 arctan (al/a2)
DATAN2 2
DMOD 2 al (mod a2)

Argument

Real
Double

Real
Double

Real
Double

Real
Double

Real
Double

Real

Real
Double

Real
Double

Real
Double

Double

Page 90

Function

Real
Double

Real
Double

Real
Double

Real
Double

Real
Double

Real

Real
Double

Real
Double

Real
Double

Double

FORTRAN-80 Reference Manual Page 91

9.4

FUNCTION SUBPROGRAMS

A program unit which begins with a FUNCTION
statement is called a FUNCTION subprogram.

A FUNCTION statement has one of the following
forms:

t FUNCTION f(al,a2,...an)
or

FUNCTION f(al,a2,...an)
where:

1. t is either INTEGER, REAL, DOUBLE PRECISION or
LOGICAL or 1is empty as shown in the second
form.

2. f is the name of the FUNCTION subprogram.
3. The ai are dummy arguments of which there must
be at least one and which represent variable

names, array names or dummy names of SUBROUTINE
or other FUNCTION subprograms.

CONSTRUCTION OF FUNCTION SUBPROGRAMS

Construction of FUNCTION subprograms must comply
with the following restrictions:

1. The FUNCTION statement must be the first
statement of the program unit.

2. Within the FUNCTION subprogram, the FUNCTION
name must appear at least once on the left side
of the equality sign of an assignment statement
or as an item in the input list of an input
statement. This defines the value of the
FUNCTION so that it may be returned to the
calling program.

Additional values may be returned to the
calling program through assignment of values to
dummy arguments.

FORTRAN-80 Reference Manual Page 92

Example:
FUNCTION Z7(A,B,C)

[
~
]

5.*(A-B) + SQRT(C)

C REDEFINE ARGUMENT
B=B+27

The names in the dummy argument list may not appear
in EQUIVALENCE, COMMON or DATA statements in the
FUNCTION subprogram.

If a dummy argument is an array name, then an array
declarator must appear in the subprogram with
dimensioning information consistant with that in
the calling program.

A FUNCTION subprogram may contain any defined
FORTRAN statements other than BLOCK DATA
statements, SUBROUTINE statements, another FUNCTION
statement or any statement which references either
the FUNCTION being defined or another subprogram
that references the FUNCTION being defined.

The logical termination of a FUNCTION subprogram is
a RETURN statement and there must be at least one
of them.

A FUNCTION subprogram must physically terminate
with an END statement.

ExamEle:

FUNCTION SUM (BARY,I,J)
DIMENSION BARY(10,20)
SUM = 0.0
DO 8 K=1,I
pogs M =1,J

8 SUM = SUM + BARY(K,M)
RETURN
END

FORTRAN-80 Reference Manual Page 93

9.6

REFERENCING A FUNCTION SUBPROGRAM

FUNCTION subprograms are called whenever the
FUNCTION name, accompanied by an argument list, is
used as an operand in an expression. Such
references take the following form:

f(al,a2,...,an)

where f is a FUNCTION name and the ai are actﬁal
arguments. Parentheses must be present in the form
shown.

The arguments ai MUST agree in type, order and
number with the dummy arguments in the FUNCTION
statement of the called FUNCTION subprogram. There
is no type conversion of arguments. There must be
at least one argument. Arguments may be any of the
following:

1. A variable name.

2. An array element name.

3. An array name.

4. An expression.

5. A SUBROUTINE or FUNCTION subprogram name.

6. A Hollerith or Literal constant.

If an ai is a subprogram name, that name must have
previously been distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresponding dummy arguments in the called
FUNCTION subprograms must be used in subprogram
references.

If ai is a Hollerith or Literal constant, the
corresponding dummy variable should encompass
enough storage units to correspond exactly to the
amount of storage needed by the constant.

When a FUNCTION subprogram is called, program
control goes to the first executable statement
following the FUNCTION statement.

FORTRAN-80 Reference Manual Page 94

9.8

The following examples show references to FUNCTION
subprograms.

Zz10 = FT1+27(D,T3,RHO)

DIMENSION DAT(5,5)

-
-

S1 = TOT1 + SUM(DAT,5,5)

SUBROUTINE SUBPROGRAMS

A program unit which begins with a SUBROUTINE
statement is called a SUBROUTINE subprogram. The
SUBROUTINE statement has one of the following
forms:

SUBROUTINE s (al,a2,...,an)

or

SUBROUTINE s

where s is the name of the SUBROUTINE subprogram
and each ai is a dummy argument which represents a

variable or array name or another SUBROUTINE or
FUNCTION name.

CONSTRUCTION OF SUBROUTINE SUBPROGRAMS

1. The SUBROUTINE statement must be the first
statement of the subprogram.

2. The SUBROUTINE subprogram name must not appear
in any statement other than the initial
SUBROUTINE statement.

3. The dummy argument names must not appear in
EQUIVALENCE, COMMON or DATA statements in the
subprogram.

4, If a dummy argument is an array name then an
array declarator must appear in the subprogram
with dimensioning information consistant with
that in the calling program.

5. If any of the dummy arguments represent values
that are to be determined by the SUBROUTINE
subprogram and returned to the calling program,
these dummy arguments must appear within the
subprogram on the left side of the equality
sign in a replacement statement, in the input
list of an input statement or as a parameter
within a subprogram reference.

FORTRAN-80 Reference Manual Page 95

6.

10.

A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statements, FUNCTION
statements, another SUBROUTINE statement, a
PROGRAM statement or any statement which
references the SUBROUTINE subprogram being
defined or another subprogram which references
the SUBROUTINE subprogram being defined.

A SUBROUTINE subprogram may contain any number
of RETURN statements. It must have at least
one.

The RETURN statement (s) is the logical
termination point of the subprogram.

The physical termination of a SUBROUTINE
subprogram is an END statement.

If an actual argument transmitted to a
SUBROUTINE subprogram by the calling program is
the name of a SUBROUTINE or FUNCTION
subprogram, the corresponding dummy argument
must be used in the called SUBROUTINE
subprogram as a subprogram reference.

Example:
C SUBROUTINE TO COUNT POSITIVE ELEMENTS

C

IN AN ARRAY
SUBROUTINE COUNT P(ARRY,I,CNT)
DIMENSION ARRY (7)
CNT =0
DO 9 J=1,1
IF(ARRY(J))9,5,5
CONTINUE
RETURN
CNT = CNT+1l.0
GO TO 9
END

FORTRAN-80 Reference Manual Page 96

9.

9

REFERENCING A SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram may be called by using a
CALL statement. A CALL statement has one of the
following forms:

CALL s(al,a2,...,an)
or
CALL s

where s is a SUBROUTINE subprogram name and the ai
are the actual arguments to be wused by the
subprogram. The ai must agree in type, order and
number with the corresponding dummy arguments in
the subprogram-defining SUBROUTINE statement.

The arguments in a CALL statement must comply with
the following rules:

1. FUNCTION and SUBROUTINE names appearing in the
argument list must have previously appeared in
an EXTERNAL statement.

2. If the called SUBROUTINE subprogram contains a
variable array declarator, then the CALL
statement must contain the actual name of the
array and the actual dimension specifications
as argquments.

3. If an item in the SUBROUTINE subprogram dummy
argument list 1is an array, the corresponding
item in the CALL statement argument 1list must
be an array.

When a SUBROUTINE subprogram is called, program
control goes to the first executable statement
following the SUBROUTINE statement.

Example:
DIMENSION DATA(10)

C THE STATEMENT BELOW CALLS THE
C SUBROUTINE IN THE PREVIOUS PARAGRAPH
C

CALL COUNTP (DATA,10,CPOS)

FORTRAN-80 Reference Manual Page 97

9.10

RETURN FROM FUNCTION AND SUBROUTINE SUBPROGRAMS

The logical termination of a FUNCTION or SUBROUTINE
subprogram is a RETURN statement which transfers
control back to the calling program. The general
form of the RETURN statement is simply the word

RETURN

The following rules govern the use of the RETURN
statement:

1. There must be at least one RETURN statement 1in
each SUBROUTINE or FUNCTION subprogram.

2. RETURN from a FUNCTION subprogram is to the
instruction sequence of the calling program
following the FUNCTION reference.

3. RETURN from a SUBROUTINE subprogram is to the
next executable statement in the calling
program which would logically follow the CALL
statement.

4. Upon return from a FUNCTION subprogram the
single-valued result of the subprogram is
available to the evaluation of the expression
from which the FUNCTION call was made.

5. Upon return from a SUBROUTINE subprogram the
values assigned to the arguments in the
SUBROUTINE are available for use by the calling
program.

Example:
Calling Program Unit

CALL SUBR(Z9,B7,R1l)

Called Program Unit

SUBROUTINE SUBR(A,B,C)
READ(3,7) B
A = B**C
RETURN
7 FORMAT (F9.2)
END

In this example, Z9 and B7 are made available to
the calling program when the RETURN occurs.

FORTRAN-80 Reference Manual Page 98

9.11

PROCESSING ARRAYS IN SUBPROGRAMS

If a calling program passes an array name to a
subprogram, the subprogram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any of
its dummy arguments represent arrays or array
elements.

For example, a FUNCTION subprogram designed to
compute the average of the elements of any one
dimension array might be the folowing:

Calling Program Unit

DIMENSION Z1(50),22(25)

Al

AVG(21,50)

T
€
1

Al-AVG(Z2,25)

Called Program Unit

FUNCTION AVG (ARG, I)
DIMENSION ARG(50)
SUM = 0.0
Do 20 J=1,I

20 SUM = SUM + ARG(J)
AVG = SUM/FLOAT(I)
RETURN
END

Note that actual arrays to be processed by the
FUNCTION subprogram are dimensioned in the calling
program and the array names and their actual
dimensions are transmitted to the FUNCTION
subprogram by the FUNCTION subprogram reference.
The FUNCTION subprogram itself contains a dummy
array and specifies an array declarator.

FORTRAN-80 Reference Manual Page 99

Dimensioning information may also be passed to the
subprogram in the paramater list. For example:

Calling Program Unit

DIMENSION A(3,4,5)

CALL SUBR(A,3,4,5)

END
Called Program Unit

SUBROUTINE SUBR(X,I,J,K)
DIMENSION X(I,J,K)

RETURN
END

It is valid to use variable dimensions only when
the array name and all of the variable dimensions
are dummy arguments. The variable dimensions must
be type Integer. It is invalid to change the
values of any of the variable dimensions within the
called program.

FORTRAN-80 Reference Manual Page 100

9.12

BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram has as its only purpose the
initialization of data in a COMMON block during
loading of a FORTRAN object program. BLOCK DATA
subprograms begin with a BLOCK DATA statement of
the following form:

BLOCK DATA [subprogram-name]

and end with an END statement. Such subprograms
may contain only Type, EQUIVALENCE, DATA, COMMON
and DIMENSION statements and are subject to the
following considerations:

1. If any element in a COMMON block 1is to be
initialized, all elements of the block must be
listed in the COMMON statement even though they
might not all be initialized.

2. Initialization of data in more than one COMMON
block may be accomplished in one BLOCK DATA
subprogram.

3. There may be more than one BLOCK DATA
subprogram loaded at any given time.

4. Any particular COMMON block item should only be
initialized by one program unit.

Example:

BLOCK DATA
LOGICAL Al

COMMON /BETA/B (3, 3) /GAM/C (4)
COMMON/ALPHA/Al,F,E,D

DATA B/1.1,2.5,3.8,3%4.96,
12*0.52,1.1/,C/1.2E0,3*4.0/
DATA Al/.TRUE./,E/-5.6/

FORTRAN-80 Reference Manual Page 101

9.13

PROGRAM CHAINING

Programs may be loaded and executed (CHAINed) by a
FORTRAN program through the CALL FCHAIN facility.
The general syntax is:

CALL FCHAIN ('filename')

where filename is a valid operating-
system-dependent file specification of a machine
executable file. The exact syntax varies under
different operating systems. Refer to the
"Microsoft FORTRAN-80 User's Manual", Section 3.

RULES:

1. 'filename' must be wvalid according to your
operating system's rules.

2. The program CHAINed must be a "MAIN" program.
That 1is, one having an ENTRY Point. FORTRAN,
COBOL, and assembly language subroutines do not
conntain a "MAIN" entry point.

3. Parameters may not be passed to CHAINed
programs.

4, 1Illegal filename, Illegal drive specification,
File not found, Out of memory, and Disk read
errors will result in a fatal **IO** Error.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

FORTRAN-80 Reference Manual Page 102

APPENDIX A

Language Extensions and Restrictions

The FORTRAN-80 language includes the following extensions to
ANSI Standard FORTRAN (X3.9-1966).

1.

2.

If ¢ is used in a "STOP c' or 'PAUSE c¢' statement,
c may be any six ASCII characters.

Error and End-of-File branches may be specified 1in
READ and WRITE statements using the ERR= and END=
options.

The standard subprograms PEEK, POKE, INP, and OUT
have been added to the FORTRAN library.

Statement functions may use subscripted variables.

Hexadecimal constants may be used wherever Integer
constants are normally allowed.

The 1literal form of Hollerith data (character
string between apostrophe characters) is permitted
in place of the standard nH form.

Holleriths and Literals are allowed in expressions
in place of Integer constants.

There is no restriction to the number of
continuation lines.

Mixed mode expressions and assignments are allowed,
and conversions are done automatically.

FORTRAN-80 Reference Manual Page 103

FORTRAN-80 places the following restrictions wupon Standard
FORTRAN.

1. The COMPLEX data type is not implemented.

2. The specification statements must appear in the
following order:

1. PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA
2. Type, EXTERNAL, DIMENSION

3. COMMON

4. EQUIVALENCE

5. DATA

6. Statement Functions

3. A different amount of computer memory is allocated
for each of the data types: Integer, Real, Double
Precision, Logical.

4. The equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement line.

5. In Input/Output 1list specifications, sublists
enclosed in parentheses are not allowed.

Descriptions of these language extensions and restrictions
are included at the appropriate points in the text of this
document.

FORTRAN-80 Reference Manual Page 104

APPENDIX B

I/0 Interface

Input/Output operations are table-dispatched to the driver
routine for the proper Logical Unit Number. S$SLUNTB is the
dispatch table. It contains one 2-byte driver address for
each possible LUN. It also has a one-byte entry at the
beginning, which contains the maximum LUN plus one.

The initial run-time package provides for 10 LUN's (1 - 10).
Units 1, 3, 4, and 5 are preassigned to the console (TTY).
Unit 2 is preassigned to the Line Printer. Units 6-10 are
preassigned to Disk Files (see User's Manual, Section 3).

Any of these may be redefined by the user simply by changing
the appropriate entries in SLUNTB. The runtime system uses
LUN 3 for errors and other user communication. Therefore,
LUN 3 should correspond to the operator console. The
initial structure of SLUNTB 1is shown in the 1listings
following this appendix.

It is also possible to add LUNs to SLUNTB. If you do this,
change the MAXLUN+1 byte at the label SLUNTB, and make sure
you also change the value of MAXLUN in the DSKDRV.MAC
module.

The device drivers also contain local dispatch tables. Note
that S$SLUNTB contains one address for each device, yet there
are really seven possible operations per device:

1) Formatted Reaqd

2) PFormatted Write
3) Unformatted Read
4) Unformatted Write

5) Rewind
6) Backspace
7) Endfile
Each device driver contains up to seven routines. The

starting addresses of each of these seven routines are
placed at the beginning of the driver, in the exact order
listed above. The entry in SLUNTB then points to this local
table, and the runtime system indexes into it to get the
address of the appropriate routine to handle the requested
I/0 operation.

FORTRAN-80 Reference Manual Page 105

The following conventions apply to the individual 1I/0
routines:

l.

2.

Location S$BF contains the data buffer address for
READs and WRITEs.

For a WRITE, the number of bytes to write is in
location $BL.

For a READ, the number of bytes read should be
returned in $BL.

All I/O operations set the condition codes before
exit to indicate an error condition, end-of-file
condition, or normal return:

a) Cy=l, Z=don't care - I/0 error
b) C¥Y=0, Z=0 - end-of-file encountered
c) CY=0, Z=1 - normal return

The runtime system checks the condition codes after
calling the driver. If they indicate a non-normal
condition, control is passed to the label specified
by "ERR=" or "END=" or, if no label is specified, a
fatal error results.

S$IOERR is a global routine which prints an "ILLEGAL
I/0 OPERATION" message (non-fatal). This routine
may be used if there are some operations not
allowed on a particular device (i.e. Unformatted
I/0 on a TTY).

NOTE

The I/0 buffer has a fixed
maximum length of 132 bytes.
If a driver allows an input
operation to write past the
end of the buffer, essential
runtime variables may be
affected. The consequences
are unpredictable.

The listings following this appendix contain an example

driver

for a TTY. REWIND, BACKSPACE, and ENDFILE are

implemented as No-Ops and Unformatted I/O as an error. This
is the TTY driver provided with the runtime package.

1

PAGE

MACS88 1.9

GET CHAR POSIT IN BUFFER

ILLEGAL OPERATIONS
(PRINT ERROR AND RETURN)
READ

ZERO BUFFER LENGTH
INPUT A CHAR

AND OFF PARITY

IQORE LINE FEEDS

ONLY 1 BYTE

SAVE TIT
;PUT IT IN BUFFER

BINARY READ

H

i

;GET BUFFER ADDR
:ADD OFFSET
‘INCREMENT SBL
;

;GET NEXT CHAR
i

ERR, STTYIN
nmnmrmmﬁnwa:ﬁ%@nr
FORMATTED READ
FORMATTED WRITE
REWIND

.
’
.
’
.
’

D TN L DT LI TN LD LN L T T

ERR, $BL, $BF, $

oEEEENSE BE B R B o iy
BNECEECECS B2 0§ gER.SEAs w BS. Ao WEEA. B.

TTY I/0 DRIVER

EXT

B

aggggggggggggﬂaﬂﬂﬂﬂﬂﬂﬂﬂgﬂﬂﬂﬂﬁﬂgﬂﬂggaaﬂﬁgﬂﬂaﬂﬂggﬂ
OO IO~ D AR N FINO T 0N RN FIND- D ND—HOIMTUNO AR|~ANMT ~o0
ﬂaﬂﬂggagg111111111122222222223333333333444444444
Bgﬂuaﬂﬂﬂﬂu0ﬂgBagnaaanaaanaaaaﬂﬂaﬂﬂaﬂgaﬂﬂuaaﬂgnﬂﬂﬂﬂ

>
Bes
m .
3B

LI

* x % - % x x - % x

) 1] ~ un) ™ r~e —

||||||| = =15 — o~ = o~ —AS ™

=) ORLLE e = .Hm SIS =

Huwmﬂﬂ%) e on S = oa® ')
Seesses I 151§ Tt TSI 7 Db m M P ot 3T S b T3 g
e 1 T A 1S o S T A A i L

RO N/OEED

—
S OOHESOOHSEHSHRNEENRRENRSEEN
(SIS I TS L L~) =

ARSI gRREEED

b
~JOnh

B2 RR R IEN A G

~J~J~1~J~JOh

OSSOSO NERERERRHNHOODESD
F O™

WISttt

=
SeoaeEmnamEm

=
[# o]
~J

@D
poge *

2B

CA @679 '
31

c2 0064 '
BC

CD @04F *

Cc3 9079 '

@A
D @05F *

20
@a79 '
30
879 '
oA
0067 *

CD 2877 *

C3 9678 '

PAGE

S

SeeSaaones

viuwn
ARSI CaECEEREESaEReERaeEaE®

.IO\U'IngI\Ji—‘

—SIO 00~

(STSTSTS LS TST ST IS IS TS TS TS TS T T T s oS T Tas o T s s TSt s T Lo s TS T T)
000000 ~1~J~J~J~I~-J~)~ - JOhnvrhonovovohaohnanovuonuiunn

N &WO0 ~ JAULE WD 00 ~JOWULE LN
s T TS L S L o L T T T s s I I T Lo s T

DR3FW1:

DR3FW2:
DRV32:

3ERY3

DRV3BW
DRV31

sEMPTY BUFFER
;BUFFER ADDRESS
;sDECREMENT LENGTH
:SAVE IT

:CR

:NO LINE FEEDS

;NOT FORM FEED

: FORM FEED

;OUTRUT IT

:LF

:GET CHAR BACK

:NO MCRE LINE FEEDS

;ﬁg MCRE LINE FEEDS

QUTRUT IT
GET FIRST CHAR IN BUFFER

;ONIT 2 IS LPT
UNITS 6-18 ARE DSK
DTC COMMUNICATIONS WNIT 4
MAX LN + 1
INT TO SDRV3 FOR NOW

:
THEY ALL PO

.
’

LUNTB
RV3
13
SDRV3
LPT
SDRV3
LPT
LPTDRV
LPTDRV
SDRV3
DTC
SDRV3
DTC
MDR
SDRV3
V3
V3
DRV3
RV3
RV3
DSKDRV
DSKDRV
DSKDRV
DSKDRV
DSKDRV
DSKDRV

=

SLUNTB 0000'

DRIVER ADDRESSES FOR LUN'S 1 THROUGH 190

ZEEEEEE

*

ORIV RODIADD
SIuea—anem eSS
~ONR—~NM
A A A A A A A A A S NI OII I I NN N O N N
OSSNSO EaaERE®

I~ OND—NM

PAGE

PAGE

2
=1

9001 DTC
LPTDRV 0003* DSKDRV

DSK

MAC80 1.0

* * x * x X kK KK

=2 2 ~ un r~ SmO

= [-~ T~ =2 o S T L

[oe]] LI T~ | =2 oaees

(ST e e = = LSLr ST S
SR SREH SSNeNEERE®R o] SOt
8D S SEeeeEeea® 28 AV
=11 S e anem (SIS Qoeannnee®

MACS80 1.0

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

FORTRAN-80 Reference Manual Page 106
APPENDIX C

Subprogram Linkages

This appendix defines a normal subprogram call as generated
by the FORTRAN compiler. It 1is included to facilitate
linkages between FORTRAN programs and those written in other
languages, such as 8080 Assembly.

A subprogram reference with no parameters generates a simple
"CALL" instruction. The corresponding subprogram should
return via a simple "RET." (CALL and RET are 8080 opcodes -
see the assembly manual or 8080 reference manual for
explanations.)

A subprogram reference with parameters results in a somewhat
more complex calling sequence. Parameters are always passed
by reference (i.e., the thing passed is actually the address
of the 1low byte of the actual argument). Therefore,
parameters always occupy two bytes each, regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1l will be in HL, 2 in DE (if present), and 3 in BC
(if present).

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL.
2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data block.
BC will point to the low byte of this data block
(i.e., to the low byte of parameter 3).

Note that, with this scheme, the subprogram must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. Neither the compiler nor
the runtime system checks for the correct number of
parameters.

If the subprogram expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system
subroutine which will perform this transfer. This argument

FORTRAN-80 Reference Manual Page 107

transfer routine is named $AT, and 1is called with HL
pointing to the local data area, BC pointing to the third
parameter, and A containing the number of arguments to
transfer (i.e., the total number of arguments minus 2). The
subprogram is responsible for saving the first two
parameters before calling $AT. For example, if a subprogram
expects 5 parameters, it should look like:

SUBR: SHLD Pl ;SAVE PARAMETER 1
XCHG
SHLD P2 ;SAVE PARAMETER 2
MVI A,3 :NO. OF PARAMETERS LEFT
LXI H,P3 ;POINTER TO LOCAL AREA
CALL $AT ;TRANSFER THE OTHER 3 PARAMETERS

EBody of subprogram]

RET ; RETURN TO CALLER
Pl: DS 2 ;SPACE FOR PARAMETER 1
P2: DS 2 ;:SPACE FOR PARAMETER 2
P3: DS 6 ;SPACE FOR PARAMETERS 3-5

When accessing parameters in a subprogram, don't forget that
they are pointers to the actual arguments passed.

NOTE

It 1is entirely up to the
programmer to see to it that
the arguments in the calling
program match in number, type,
and length with the parameters
expected by the subprogram.
This applies to FORTRAN
subprograms, as well as those
written in assembly language.

FORTRAN Functions (Section 9) return their wvalues in
registers or memory depending upon the type. Logical
results are returned in (A), Integers in (HL). Extended
integers and Reals return results in memory at $AC. Double
Precision Reals return results in memory at S$DAC. SAC and
S$DAC are the addresses of the low bytes of the mantissas.

FORTRAN-80 Reference Manual Page 108

APPENDIX D

ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
000 NUL 043 + 086 v
001 SOH 044 , 087 W
002 STX 045 - 088 X
003 ETX 046 . 089 Y
004 EOT 047 / 090 Z
005 ENQ 048 0 091 [
006 ACK 049 1 092 \
007 BEL 050 2 093]
008 BS 051 3 094 ~
009 HT 052 4 095 _
010 LF 053 5 096 <
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 S0 057 9 100 a
015 SI 058 : 101 e
016 DLE 059 ; 102 £
017 pCl 060 < 103 g
018 . DC2 061 = 104 h
019 DC3 062 > 105 i
020 DC4 063 ? 106 .
021 NAK 064 e 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 c 110 n
025 EM 068 D 111 o
026 SUB 069 E 112 p
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 GS 072 H 115 s
030 RS 073 I 116 t
031 us 074 J 117 u
032 SPACE 075 K 118 v
033 ! 076 L 119 w
034 " 077 M 120 X
035 # 078 N 121 y
036 $ 079 0 122 z
037 % 080 P 123

038 & 081 Q 124

039 ' 082 R 125

040 (083 S 126 ~
041) 084 T 127 DEL
042 * 085 U

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

FORTRAN-80 Reference Manual Page 109

APPENDIX E

Referencing FORTRAN-80 Library Subroutines

The FORTRAN-80 library contains a number of subroutines that

may be
programs.
ll

referenced by the user from FORTRAN or assembly

Referencing Arithmetic Routines

In the following descriptions, $AC refers to the
floating accumulator; SAC 1is the address of the
low byte of the mantissa. $AC+3 is the address of
the exponent. S$DAC refers to the DOUBLE PRECISION
accumulator; $DAC is the address of the 1low byte
of the mantissa. SDAC+7 1is the address of the
DOUBLE PRECISION exponent.

All arithmetic routines (addition, subtraction,
multiplication, division, exponentiation) adhere to
the following calling conventions.

1. Argument 1 is passed in the registers:
Integer in [HL]
Real in $AC
Double in $DAC

2. Argument 2 is passed either in registers, or in
memory depending upon the type:

a. Integers are passed in [HL], or [DE] if
[HL] contains Argument 1.

b. Real and Double Precision values are
passed in memory pointed to by [HL].
([HL] points to the low byte of the
mantissa.)

The following arithmetic routines are contained in
the Library:

FORTRAN-80 Reference Manual

Function

Addition

Division

Exponentiation

Multiplication

Subtraction

Name Argument 1 Type
SAY Integer*4
SAl Integer*4
SAA Real

SAE Real

$AB Real

$AQ Double
SAV Double
SAR Double
SAU Double
$D9 Integer
SDY Integer*4
$D1 Integer*4
$DA Real

$DE Real

$SDB Real

$DQ Double
$DV Double
S$DR Double
$DU Double
SE9 Integer
SEY Integer*4
SEl Integer*4
$EA Real

$EE Real

SEB Real

SEQ Double
$SEV Double
SER Double
$EU Double
$M9 Integer
$MY Integer*4
$M1 Integer*4
$MA Real

SME Real

SMB Real

$MQ Double
SMV Double
$MR Double
SMU Double
$SY Integer*4
$sl Integer*4
$Sa Real

$SE Real

$SB Real

$SQ Double
$sv Double
$SR Double
$SU Double

Page 110

Argument 2 Type

Integer
Integer*4
Integer
Integer*4
Real
Integer
Integer*4
Real
Double

Integer
Integer
Integer*4
Integer
Integer*4
Real
Integer
Integer*4
Real
Double

Integer
Integer
Integer*4
Integer
Integer*4
Real
Integer
Integer*4
Real
Double

Integer
Integer
Integer*4
Integer
Integer*4
Real
Integer
Integer*4
Real
Double

Integer
Integer*4
Integer
Integer*4
Real
Integer
Integer*4
Real
Double

FORTRAN-80 Reference Manual Page 111

Additional Library routines are provided for
converting between value types. Arguments are
always passed to and returned by these conversion
routines in the appropriate registers:

Logical in [A]

Integer in [HL]
Extended Integer in $AC
Real in $AC

Double Precision REAL in $DAC

Name Function

$CD Integer to Integer*4
$CA Integer to Real

$CC Integer to Double
$C4 Integer*4 to Integer
$C5 Integer*4 to Real
$C6 Integer*4 to Logical
$C7 Integer*4 to Double
$CH Real to Integer

$CL Real to Integer*4
$CJ Real to Logical

$CK Real to Double

$CX Double to Integer
$CO Double to Integer*4
S$Cy Double to Real

$C2Z Double to Logical

Referencing Intrinsic Functions

Intrinsic Functions are passed their parameters in
H,L and D,E. If there are three arguments, B,C
contains the third parameter. If there are more
than three arguments, B,C contains a pointer to a
block in memory that holds the remaining
parameters. Each of these parameters is a pointer
to an argument. (See Appendix B.)

For a MIN or MAX function, the number of arguments
is passed in A.

FORTRAN-80 Reference Manual Page 112

NOTE

None of the functions (except INP and OUT)
may take a byte variable as an argument.
Byte variables must first be converted to
the type expected by the function.
Otherwise, results will be unpredictable.

3. Formatted READ and WRITE Routines

A READ or WRITE statement calls one of the
following routines:

$W2 (2 parameters) Initialize for an I/0 transfer
$W5 (5 parameters) to a device (WRITE)

$R2 (2 parameters) Initialize for an I/0 transfer
SR5 (5 parameters) from a device (READ)

These routines adhere to the following <calling
conventions:

1. H,L points to the LUN

2. D,E points to the beginning of the FORMAT
statement

3. If the routine has five parameters, then B,C
points to a block of three parameters:

a. the address for an ERR= branch
b. the address for an EOF= branch

c. the address for a REC= value

The routines that transfer values into the 1I/0
buffer are:

$I0 transfers integers

S$I1 transfers real numbers

$I2 transfers logicals

$13 transfers double precision numbers

$14 transfers extended integers (4 bytes)

FORTRAN-80 Reference Manual Page 113

Transfer routines adhere to the following calling
conventions:

l. H,L points to a location that contains the
number of dimensions for the variables in the
list

2. D,E points to the first value to be transferred

3. B,C points to the second value to be
transferred if there are exactly two values to
be transferred by this call. If there are more
than two values, B,C points to a block that
contains pointers to the second through nth
values.

4., Register A contains the number of parameters
(including H,L) generated by this call.

The routine $ND terminates the I/0 process.
Example:

EXTRN $W2,$I0,$ND
ENTRY TEST

TEST: LXI H, LUN
LXI D, FORMAT
CALL SW2
LXI H,DIMENS
LXI D, NUMBER
MVI A,2

CALL $10

CALL $ND

RET
LUN: DW 1
FORMAT: DB '(11H RESULT IS=,15)"
DIMENS: DW 1
NUMBER: DW 9999

END TEST

FORTRAN-80 Reference Manual Page 114

4, Loading and Storing Floating Accumulator

In the following definitions, S$AC refers to the
floating accumulator and $DAC refers to the DOUBLE
PRECISION accumulator.

To Load Floating Accumulator:
(H,L points to value to be loaded.)

Name Function
SL1 Loads into $AC, 4 bytes
SL3 Ioads into SDAC, 8 bytes

To Store Floating Accumulator:
(H,L points to memory where value is to be stored)

Name Function
$T1 Stores 4 bytes from $AC

$T3 Stores 8 bytes from S$DAC

FORTRAN-80 Reference Manual Page 115
INDEX

Arithmetic Expression . . 25-26, 49

Arithmetic IF 44, 49, 51

Array . . « « « « « « « o 14, 20, 34-35, 37-38,
40-41, 60, 83, 92-93,
98-99

Array Declarator 20

Array Element 14, 20, 27, 32, 39

ASCII Character Codes . . 108

ASSIGN . + « + o« o« « « o« 44, 47-48

Assigned GOTO 44, 47

BACKSPACE . +. + « « « + « 64

BLOCK DATA . . . « « . . 34, 37, 95, 100

CALL . +« « « « « « « « « 44, 56, 96

Characteristic . e s o 23

Comment Line 11

COMMON . . . « « « « « « 34, 38-41, 92, 94, 100

Computed GOTO 44, 46

Constant . e e o e . 14-15

Continuation 9-10

CONTINUE e s & o . 44, 54

Control Statements . . 44

DATA . . « « « « « « « « 34, 41, 92, 94, 100

Data Representation . . . 14

Data Storage 22

DECODE . . « « ¢« « « « « 65

DIMENSION « « . 20, 34, 37, 100

Disk Files . . . « « . . 63

DO &« ¢ ¢ ¢ ¢ o« o « o« « o 44, 50-52

DO Implied List 66

Double precision . . « 14, 24

DUmMmMy . . « « « « & « o 94-96, 98-99

ENCODE . « &+ « « « « « « 65

END &« « ¢« ¢« « « o« « « « o« 44, 56, 92, 95, 100

END Line . . « « « « « « 11

ENDFILE « « « « . b4

EQUIVALENCE . « « « + « « 34, 39-41, 92, 94, 100

Executable 12, 34, 44

Expression 25-26, 31-32

Extended Intege « « « o 15

Extended Range « « « « 53

EXTERNAL . . . « « « « « 34, 37, 93, 96

External Functions . . . 90

Field Descriptors 69

FORMAT « 58-61, 68, 72, 74-84

Formatted READ . . . « 58

Formatted WRITE . .
FUNCTION

GOTO . . . « . .

Hexadecimal
Hollerith

I/0
I/0 List

IF . « « &
IMPLICIT

INCLUDE . « . .« .
IndeX « « « o« o« &

Initial Line . . .
INP & « ¢ o o o o =
Integer . « « « .« o
Integer*2
Integer*4
Intrinsic Functions

Label+ . .
Library Function .
Library Subroutines
Line Format . .
List Item

Literal . . « « « « &

Logical
Logical
Logical
Logical
Logical
LUN . .

Mantissa

Nested
Non-exec
Numeric

OPEN .
Operand
Operator
ouTr . .

PAUSE .
PEEK .
POKE .
PROGRAM

RAN . .
Range .
READ .

Real .
Relation

Expression .
IF . « « « &
Operator . .
Unit Number .

utable . . .
Conversions .

.
.
]
.
e & e

al Expression

61
34,

44-45,

22,
15,

37, 85,
51

42
22,

31,

20, 31,

74-76, 93

57,
65
44,
43
13
51
10
87
14,
22
15,
89,

9,
85,
109
9
66
20,
93
14,
27,
a4,
29
58,
58,

23

53
12,
70

64
25
25
87

a4,
87
87
34,

88
51
59,
112
14,

12,

104
49

19, 23

18,
111

22, 24

44-45,
87

22, 31, 42,
19, 23,
30, 50

50-51

76

104
104

62,
62,

55

95

62, 68, 78,

19, 23

27-28

51

91-97, 99

42, 60,

75_76'

81-84,

Relational Operator

Replacement Statement
RETURN . + « « « « &
REWIND . . .« + « o« &

Scale Factor
Specification Statement
Statement Function . .
STOP . ¢ ¢« « + o o &
Storage . . « .+ .+ &
Storage Format . . .
Storage Unit
Subprogram . . . < . .
SUBROUTINE . . « « + &
Subscript+ .
Subscript Expression .

TYPE .« « o o o o o o
Type Statement

Unconditional GOTO . .
Unformatted I/0

Variable . . « « + + =«

WRITE - - . . - - L] . -

50

51, 56, 92,

85-86
51, 55

14
22-23,
37, 56,
34, 37,
20-21,
21, 27

39
85,
56,

27

85,

100
35

45
62
14, 19, 32, 38,
61-62,
112

68, 78,

91-

95, 97

100, 106
92-97

93
81-84,

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

~ edit-80
= user’s guide

edit-80
user’s guide

Microsoft EDIT-80
for the Radio Shack TRS-80
Model | Computer

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement.

Itis against the law to copy any of the Microsoft FORTRAN-80 package on cassette tape, disk or
any other medium for any purpose other than personal convenience.

Copyright Microsoft, 1979

TRS-80 is a trademark of Radio Shack
TRSDOS is a trademark of Radio Shack

8412-130-01

edit-80
user’s guide

Microsoft EDIT-80
for the Radio Shack TRS-80
Model | Computer

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft EDIT-80, Release 1.3 November, 1980

Addendum to: EDIT-80 User’s Guide
For TRS-80 Model I

Add to Section 1.2, Running EDIT-80:

Upon entering EDIT-80, the filename 1is requested by the
prompt

FILE:

If the <break> key is typed at this point (instead of a
filename), EDIT-80 will exit to the operating system.

Add to Section 2.4, Print Command:

Typing P <enter> causes the next 10 lines to be displayed,
instead of the next 20 lines.

Add to Sections 6.1 and 6.3, Exit and Write Commands:

When Exiting or Writing a file, a filename 1is always
required, unless it is the first time the file is being
written to disk. However, it is not necessary to include a
drive number with the filename. The file will be written to
the drive from which it was obtained, if no drive number is
specified.

Add to Appendix D, EDIT-80 Special Characters:

1. 1If the up-arrow key or the <break> key is typed at
commandd level, the previous line is displayed.

2. If the down-arrow key (line feed) 1is typed at
command level, the next line is displayed.

3. The right-arrow key (tab) inserts a true tab into
the 1line of text. (Previous versions of EDIT-80
inserted the number of spaces displayed on the
screen.)

4. The shift-@ key has the effect of Control-S.
Shift-@ halts and resumes execution of an EDIT-80

command.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft EDIT-80 User's Guide

Contents

CHAPTER 1 EDIT—BO Operation . @ . . . L] L -

Introduction . « o« « o o &
Running EDIT—BO
Ending the Editing Session
Line Numbers and Ranges . .
Format Notation . « « « « &

B N N Y

e« & @& s =

U W N —

« e e e e

e e e e
.

CHAPTER 2 Beginning Interline Editing

2.1 Insert Command .« « « o« s o« s o =
2.2 Delete Command . « « o « s o + =
2.3 Replace Command * o e o o o o @
2.4 Print Command « « ¢« « s « s o o« =
2.5 List Command . « « « « o o o o &«
2.6 Number Command . « « « o o o o

CHAPTER 3 Intraline Editing - Alter Mode .

Alter Command « « « « =
Alter Mode Subcommands
Cursor Position. . .
Insert Text .« « « « &
Delete Text . « « . =«
Replace Text . « « .
Find Text « « &« « o &
Ending and Restarting Alter Mode
Extend Command . « « s s s « « =

O s&s wWwh =
“ s e & o
« o o 8 o &
* s 0 e o e 0
« * e 8 o e @
® s o o o 8 @
« & & 8 8 8 0

WWWwWwwwwww

CHAPTER 4 Find and Substitute Commands . .

Find Command . « « ¢ o o o ¢ o o
Substitute Command . « « « o o =«

> o
e °
N =

CHAPTER 5 PageS « o o o o o o o o o o o »

Specifying Page Numbers .
Inserting Page Marks . .
Deleting Page Marks . . .
Begin Command « « « « o+
Other Commands and Page Marks

Lo on
a & & a 9
s W =

w

" s o 8 e
* e 8 e @

. o o @
* e ® s @
o ~Januun

L] L] L] . L] L] L] . .
L] L] L L . L] L] . L
] e = * . » . @
L] L] L] L L] L] L] . L]

CHAPTER 6

(oAl) We e We Mo We
¢ o @

U wh -

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

o1
-2

Exiting EDIT"‘BO . - - . . - . - .

Exit Command .
Quit Command .
Write Command .
Index Files ., .
Parameters ., .
BASIC Switch .,
SEQ and UNSEQ Swit

Do o oo o e

Q L] L] L] L] . .

h

'.l

s

Alphabetic Summary of Commands .
Alphabetic Summary of Alter Mode
Summary of Notation
EDIT-80 Special Characters , . .
Error Messages . . « « o « o o o

Output File Format . o+ « « o o &«

L] L] L] L . . L]
L] L] [] L] [] - L]
s @ ® e 8 & @
L] L] L] L] L] L] L]
L] L] L] [] L] L] L]
* & & = @ . »

26
26
26
26
27
27
28
28
30
32
34
35
36

38

Microscoft EDIT-80 User's Guide Page S

1.2

CHAPTER 1

EDIT-80 Operation

Introduction

EDIT=80 is a line~oriented and character-oriented

text editor. EDIT-80 commands are simple and
straightforward, yet powerful enough to accommodate
the most demanding user. For the novice or for

those requiring only cursory use of EDIT-80, the
first four chapters of this document contain all
the information necessary to complete a fairly
extensive editing session. The remaining chapters
describe the enhancements to EDIT-80 that provide
the user with more sophisticated techniques.

Running EDIT-80

To run EDIT-80, type and enter
EDIT

at TRSDOS command level. EDIT-80 will ask for the
filename by typing :

FILE:

Enter the name of your file. Use TRSDOS filename
format for the filename:

filename[/extension] [.password] [:drive#]

If the filename refers to a file that already
exists, type the filename followed by <enter>, and
EDIT-80 will read in the file. If the €file does
not have 1line numbers, EDIT-80 will append them,
beginning with line number 100 and incrementing by
100. After EDIT-80 prints

Version x.x

Copyright 1977,78 (c) by Microsoft
Created: xxxx

g;xx Bytes free

—

it is at commmand level, as indicated by the *
prompt. All commands to EDIT-80 are entered after
the * prompt.

If the filename refers to a new file to be created,
type the filename followed by the <break> key.

Microsoft EDIT-80 User's Guide Page 6

1.3

EDIT-80 will return the message

Creatin

Version xX.X

Copyright 1977,78 (c) by Microsoft
Created: xXxX

XxXxXX Bytes free

"

Next enter the command I (see Section 2.1 for a
further description of the I command). EDIT-80
will type the first line number, 00100, followed by
a tab.

*T
00100

Now you are ready to enter the first line of vyour
file. A line consists of up to 255 characters and
is terminated by <enter>. After every line
entered, EDIT-80 will type the next line number,
incrementing by 100. This 1is the "permanent
increment." (There are various commands that will
change the permanent increment - see Chapter 2.)
Line numbers 00000 through 99999 are available for
use in your EDIT-80 file.

NOTE

Microsoft products such as TRS-80 FORTRAN
and MACRO-80 all support input files which
include EDIT-80 line numbers.

If a typing error is made while entering or editing
a line, use the Delete key (€—) to delete the
incorrect character(s). If, while typing a 1line,
you wish to erase the entire line and start over,
type shift <—,

When you wish to stop entering lines and return to

command level, type the <break> key after the next
available line number.

Ending the Editing Session

To exit EDIT=-80, enter the Exit command:

*E
The Exit command writes the edited file to disk
under the filename that was used to create the
file. Subsequent editing sessions with that file
require that a filename be specified with the Exit

Microsoft EDIT-80 User's Guide Page 7

command. See Section 6.1.

To exit EDIT-80 without writing the edited file to
disk, enter the Quit command:

*Q

After execution of a Quit command, all the changes
entered during the editing session are lost.

1.4 Line Numbers and Ranges

Most commands to EDIT-80 require a reference to a
line number or a range of line numbers. A line
number is specified by using the number itself (it
is not necessary to type the leading zeros), or one
of three special characters that EDIT-80 recognizes
as line numbers. These special characters are:

. (period) refers to the current line
A (up arrow) refers to the first line
* (asterisk) refers to the last line

Ranges may be specified in one of two ways:
1. With a colon. The designation
200:1000

means all lines from line number 200 to line
number 1000, inclusive. If lines 200 and 1000
do not exist, the range will begin with the
first line number greater than 200 and end with
the last line number less than 1000.

2. With an exclamation point. The designation

200!3

means the range of three lines that starts with
line 200. If 1line 200 does not exist, 200!3
means the range of three lines that starts with
the first line after 200.

Here are some examples of line and range
specifications (shown here with the Print command) :

P.:2000 Prints the range that begins with
’ the current line and ends with
line 2000.
P500 Prints line 500.

P. Prints the current line.

Microsoft EDIT-80 User's Guide Page 8

P.!15 Prints the range that begins at
the current line and ends after
the next 15 lines.

PA:1500 Prints the range that begins with
the first line and ends with
line 1500.

PAs* Prints the entire file.

See Appendix C for more examples of range
specification.

1.5 Format Notation

Throughout this document, generalized formats of
EDIT-80 commands are given to guide the user.
These formats employ the following conventions:

1. Items in square brackets are optional,.

2, Items in capital letters must be entered as
shown.

3. Items in lower case letters enclosed in angle
brackets are to be supplied by the user:

<position> supply any line number (up
to five digits) or ".","A"
or MNegn

<range> supply any <position> or

any <range>
<range> = <position>:<position>
or
<position>!<number>

<inc> supply a non-zero integer
to be used as an increment
between line numbers

<filename> supply any legal TRSDOS
filename as described
in Section 1.2

4. Punctuation must be included where shown.

5. Items separated by a vertical line are mutually
exclusive., Choose one,

6. <break> refers to the break key and is echoed
as $. If you see a $ in a format notation, it
refers to the break key.

Microsoft EDIT-80 User's Guide Page 9

7. In any command format, spaces and tabs are
insignificant, except within a line number or a
filename.

8. Underlined items are typed by EDIT-80.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft EDIT-80 User's Guide Page 10

CHAPTER 2

Beginning Interline Editing

Editing a file by printing, inserting, deleting and
replacing entire lines or groups of 1lines is termed
interline editing. This section describes the commands used
to perform these functions.

2.1 Insert Command

The Insert command is used to insert lines of text
into the file. EDIT-80 types each line number for
you during insert mode. The format of the Insert
command is:

I[<position>[,<inc> ;<inc>]]

Insertion o©of 1lines begins at <position> and
continues until <break> is typed or until the
available space at that point in the file is
depleted. (In either case, EDIT-80 returns to
command level.)

If no <inc> 1is included with the command, the

default is the permanent increment. <inc>
specifies a new increment that is then established
as the permanent increment. ;<inc> specifies a
temporary increment for wuse with the current
command, but does not change the permanent
increment.

If no argument is supplied with the Insert command
(I<enter>), insertion resumes where the last insert
command was terminated, using the last temporary

increment. If only <positiom> is supplied
(I<position><enter>), the permanent increment is
used.

EDIT-80 will not allow insertion where a line
already exists. If <position> 1is a line number
that already exists, the command I<position> will
add the permanent increment (or the temporary
increment, if one was specified) to <position> and
allow insertion at 1line number <position>+<inc>.
If line <position>+<inc> already exists, or if line
numbers exist between <position> and
<position>+<inc>, an error message will be printed.

The line feed (¢) key may be used to start a new
physical 1line without starting a new logical line,
thus providing compatibility with Microsoft BASIC

Microsoft EDIT-80 User's Guide Page 11

source files,
Here is an example using the Insert command:

*17740,10
07740 K=K+1
07750 GO TO 400

07760 3
—_—

Note that the insertion is terminated with <break>.
The <break> key may be typed at the end of the last
line inserted (instead of <enter>) or at the
beginning of the next line. A line is not saved if
<break> is the first key typed on that line.

2,2 Delete Command

The Delete command removes a line or range of lines
from the file. The format of the command is:

D<range>
After a Delete command is executed, the current
line (".") is set to the first line of the deleted
range.
Examples of the Delete Command:

D7000 delete line 7000

D. delete the current line

D200:900 delete lines 200 through 900

D2000:* delete all lines from line

2000 through the last line

2.3 Replace Command

The Replace command combines the effects of the
Delete and Insert commands. The format of the
command is:

R<range>[,<inc> :<inc>]
The Replace command deletes all of the 1lines in
<range>, then allows the user to enter new text as
if an Insert command had been issued. (EDIT-80
types the line numbers.)

The options for selecting the increment between

Microsoft EDIT=-80 User's Guide Page 12

line numbers are the same as those for the Insert
command (see Section 2.1).

Here is an example using the Replace command:

*R500:600;50

00500 DO 80 I=1,7
00550 Y(I)=ALOG(Y(I))
00600 80 CONTINUE
—

In the above example, the lines in the range 500 to
600 were deleted and replaced by three new lines
(500, 550 and 600), using a temporary increment of
50. Insertion terminated automatically because
there was not enough room for EDIT-80 to create
line 650.

2.4 Print Command

The Print command prints 1lines at the terminal.
The format of the command is:

P<range>
Examples of the Print command:

P.:700 print all lines from the
current line through line 700

P800 :* print all lines from line 800
through the end of the file

Typing <line feed> (¢) at command level will cause
the line after the current line to be printed.
Typing <break> at command level will cause the line
before the current line to be printed. Typing
P<enter> will cause the next 20 1lines to be

printed.

2.5 List Command

The List command
L<range>

is the same as the Print command, except the output
goes to the line printer.

Microsoft EDIT-80 User's Guide Page 13

2.6 Number Command

The Number command renumbers lines of text. You
may wish to renumber lines to "make room" for an
insertion, or just to organize the line numbers in
a file. The format of the Number command is

N[<start>] [,<inc> ;<inc>] [=<range>]
where:

1. <start> is the first number of the new
sequence. If <start> is omitted but <range> is
included, <start> is set to the first line of
<range>. If <start> and <range> are omitted,
but <inc> is included, <start> is set to <inc>.
If <start> is omitted and <inc> is included and
<range> specifies only a page number (e.g.,

=/2), <start> is also set to <inc> on that
page. If <start>, <range> and <inc> are
omitted, <start> is set to the permanent
increment.

2. <inc> is the increment between line numbers in
the new sequence. The options for selection of
the increment are the same as those described
for the Insert command (see Section 2.1).

3. <range> is the range of 1line numbers to be
renumbered. If <range> is omitted, the entire
file is renumbered.

If the current line is renumbered, "." is reset to
the same physical line.

If a Number command would result in line numbers
being placed out of sequence, or if EDIT-80 cannot
fit all the lines using the given increment, an
"Out of order" error message is returned.

Due to EDIT-80's internal memory requirements for
executing a Number command, an attempt to renumber
a very large file may result in an "Insufficient
memory" error. If this situation arises, renumber
a smaller portion of the file, write it to disk,
renumber another portion, and so on. (See Write
Command, Section 6.3.)

Examples of the Number command:

N7000;100=200:1000 Lines 200 through 1000 will
be renumbered +to begin at
line 7000 and increment by
100.

Microsoft EDIT-80 User's Guide

N,10=400:*

N9000=10000:*

N,100

N,5=2350!10

Page 14
Lines 400 through the end
will be renumbered to begin

with 400 and increment by 10.

Using the permanent increment
lines 10000 through the end
will be renumbered to begin
at 9000.

Renumber the whole file using
increment 100.

This command could be used to
make room for an insert by
compactifying the ten lines
starting with 2350.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft EDIT-80 User's Guide Page 15

CHAPTER 3

Intraline Editing - Alter Mode

The interline editing commands discussed thus far let you
edit by inserting, deleting or replacing entire lines, of
course many editing situations require changes to an
existing 1line but not necessarily retyping of the line.
Editing a line without retyping it 1is called intraline
editing, and it is done in Alter mode.

3,1 Alter Command

The Alter command is used to enter Alter mode, The
format of the command is:

A<range>

In Alter mode, EDIT-80 types the line number of the
line to be altered and waits for an Alter mode
subcommand.

3.2 Alter Mode Subcommands

Alter mode subcommands are used to move the cursor;
search for text; or insert, delete or replace text
within a line. The subcommands are not echoed on
the terminal.

Many of the Alter mode subcommands may be preceded
by an integer, causing the command to be executed
that number of times. (When no integer is
specified, the default is always 1.) In many cases,
the entire command may also be prefaced with a
minus sign (=) which changes the normal direction
of the command's action. For example:

D deletes the next character
6D deletes the next 6 characters
=D deletes the last character

=12D deletes the last 12 characters

Microsoft EDIT-80 User's Guide Page 16

Each Alter mode subcommand is described below. A
summary of the subcommands is given in Appendix B.

NOTE

In the following descriptions, $ represents
<break>, <ch> represents any character,
<text> represents a string of characters of
arbitrary length and i represents any
integer.

3.3 Cursor Position

The following commands or terminal keys are used to
change the position of the cursor in the line. The
location of the cursor is called the "current
position."

<space> spaces over characters. i<space> moves the
cursor i characters to the right.
-i<space> moves the cursor i characters to
the left. Characters are printed as you
space over them,

—> moves the cursor to the end of the line.
If preceded by a minus sign, moves the
cursor to the beginning of the line.

L prints the remainder of the line and posi-
tions the cursor at the beginning of the
line. Proceed with the next Alter mode
subcommand.

P prints the remainder of the line and recy-
cles the cursor to the current position.
Proceed with the next Alter mode
subcommand.

W moves to the beginning of the next word. A
word is defined as a contiguous collection
of letters, numbers, ".", "$", or "%", iWw
advances the cursor over the next i words.
-iW moves the cursor back through i words
to the left,

3.4 Insert Text

I inserts text. I<text>$ inserts the given
text beginning at the current position.
Note that the text must be followed by a
<break> or by <enter>,

Microsoft EDIT-80 User's Guide Page 17

3.5 Delete Text

inserts spaces (blanks) at the current
position. The B command may be preceded
by an integer to insert that many spaces.
Spaces are inserted to the right of the
cursor only.

inserts characters. iG<ch> inserts i
copies of <ch>.

extends a line. The X subcommand types
the remainder of the 1line, goes into
insert mode and 1lets you insert text at
the end of the line. The =X subcommand
moves to the beginning of the line and
goes into insert mode. (Don't forget to
end your insertion with <break> or
<enter>.)

D

deletes the character at the current posi-
tion. iD deletes i characters beginning

at the current position. =iD deletes i
characters to the 1left of the current
position. Deleted characters are

surrounded by double exclamation points.

The back-arrow key may also be used to de-

lete characters. The character
immediately to the 1left of the current
position is deleted. i<back=-arrow> is

equivalent to -iD.

deletes (hacks) the remainder of the line
to the right of the cursor (or to the left
of the cursor if -H is typed) and enters
the insert mode. Text insertion proceeds
as if an I command had been typed.

deletes (kills) characters. K<ch> deletes
all characters up to but not including
<ch>. 1iK<ch> deletes all characters up to

the 1ith occurrence of <ch>. -iK<ch>
deletes all characters up to and including
the ith previous occurrence of <ch>. If

<ch> 1is not found, the command is not
executed.

Microsoft EDIT-80 User's Guide Page 18

3.6

3.7

deletes (obliterates) text. O<text>$ de-
letes all text up to but not including the

next occurrence of <text>. i0<text>$
deletes all text up to the ith occurrence
of <text>. -io<text>$ deletes all

characters up to and including the ith
previous occurrence of <text>.

deletes (truncates) the remainder of the
line to the right of the cursor (or to the
left of the <cursor if -T is typed) and
exits Alter mode.

deletes (zaps) words. iZ deletes the next
i words. =iZ deletes words to the left of
the cursor.

Replace Text

R

Find Text

S

replaces text. iR<text>$ deletes the next
i characters and replaces them with
<text>. =-iR<text>$ replaces text to the
left of the cursor. The deleted
characters are echoed between double
exclamation points.

changes characters one character at a
time. C<ch> changes the next character to
<ch>, Only the new character is echoed.
iC may be followed by i characters to
change that many characters; or it may be
followed by fewer than 1 characters and
terminated with <break>, in which case the
remaining characters will not be changed.
-iCc does an i<back arrow> and then an iC.
The i<back arrow> is echoed between
exclamation points.

searches for a character., S<ch> searches
for the next occurrence of <ch> after the
current position and positions the cursor
before the character. iS<ch> searches for
the ith occurrence of <ch>. -S<ch> and
-iS<ch> search for the (ith) previous
occurrence of <ch> and position the cursor
immediately before it. The character at
the cursor position is not included in the
search. If <ch> is not found, the command
is ignored.

Microsoft EDIT-80 User's Guide Page 19

F finds text. F<text>$ finds the next occur-
rence of <text> and positions the cursor
at the beginning of the string. iF<text>$
finds the ith occurrence of <text>.
-F<text>$ and ~-iF<text>$ £find the (ith)
previous occurrence of <text> and position
the cursor before it.

3.8 Ending and Restarting Alter Mode

<cr> carriage return. Prints the remainder of
the line, enters the changes and concludes
altering of that line.

A same as carriage return.

E enters the changes and concludes altering
of that 1line, but does not print the
remainder of the line.

N restores the original line (changes are
not saved) and either moves to the next
line (if an A<range> command is still in
progress), or returns to command level.

Q restores the original 1line (changes are
not saved), exits (quits) Alter mode, and
returns to command level.

Shift <— Restores the original line, stays in Alter

mode and repositions the cursor at the
beginning of the line. Echoes as AY,

3.9 Extend Command

The Extend command is issued at command level and
is used to extend lines. The format of the command
is

X<range>

The effect of the X command is equivalent to typing
an A command, followed by an X subcommand. After
entering an X command, proceed by typing the text
to be inserted at the end of the line. Don't
forget you are now in Alter mode and may use any of
the Alter mode subcommands, once <break> has been
typed.

The Extend command is particularly useful for
placing comments in assembly language programs.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft EDIT-80 User's Guide Page 20

CHAPTER 4

Find and Substitute Commands

When it is necessary to change a certain portion of text, it
is not always immediately known where that text is located
in the file. Even with a listing of the file on hand, it is
a tiresome task to scan the listing to find the line number
of a particular item that must be changed.

The EDIT-80 Find and Substitute commands allow the user to
qguickly locate text and make necessary changes.

4.1 Find Command

The Find command locates a given string of text in
the file and types the 1line(s) containing that
string. The format of the command is:

F (<range>] [,<limit>] <enter> $<string>$

where $ represents the escape key and <limit> is
the number of 1lines containing <string> to be
found. A limit of zero will find all occurrences
of <string>. The following rules apply to the
format of the Find command:

1. If $<string>$ is omitted, the last string given
in a Find command is used.

2., If <limit> 1is omitted and $<string>$ is
included, <limit> is assumed to be 1.

3. If <limit> and $<string>$ are omitted, the
previous limit is assumed.

4, If <range> 1is omitted and $<string>$ is
included, the entire range from the previous
Find command is used.

5. If <range> and $<string>$ are omitted, the
search for the previous string continues from
the line where the last occurrence was found.

If the search is unsuccessful, an error message is
printed.

Microsoft EDIT-80 User's Guide

Page 21

Here is a sample editing session using Find:

FA:$WHI(I)$

91100 WHI (I)=0

*F<enter>

01400 IF (P.GT.WHI(I))WHI(I)=P
*A.

01400 .

*F , 2$WLO (I) $

01200

WLO (I)=9999

01500

IF (P.LT.WLO(I))WLO(I)=P

*A,

01500

F.:$AVGS
Search fails

M=M+1

FFIMEANS

03700 MEAN=SUM/40

*F,0

04200 IF (P.GT.MEAN)
06700 WRITE (6,170) MEAN, M
¥24200

04200 .

Find the first line that
contains WHI(I). Prints line
1100, Find the next one, Prints
line 1400. Caught a mistake

in this line. Alter it.

Find the first two lines in the
file that contain WLO(I) (range
is still .:*). Prints lines

1200 and 1500. Alter line 1500.

Find the first line in the file
that contains AVG. There aren't
any. Try finding MEAN instead.
Prints line 3700.

Find all other lines contain-
ing MEAN. (Search begins at the
line after line 3700.) Finds
two more (4200 and 6700).

Alter line 4200, etc.

Microsoft EDIT-80 User's Guide Page 22

4.2 Substitute Command

The Substitute command locates a given string,
replaces it with a new string and types the new
line(s). The format of the command is:

S[<range>] [,<limit>] <enter> $<0ld string>$<new string>$

where $§ represents <break>, and <limit> is the
number of 1lines in which <old string> is to be
replaced by <new string>. A 1limit of =zero will
replace all occurrences of <old string> with <new
string>., <new string> may be a null string. The
following rules apply to the format of the
Substitute command:

1. If $<old string>$<new string>$ are omitted, the
strings given in the last Substitute command
are used.

2. If <limit> is omitted and $<old string>$<new
string>$ are included, <limit> is assumed to be
zero,

3. If <limit> and $<o0ld string>$<new string>$ are
omitted, the previous limit is assumed.

4, If <range> is omitted and $<o0ld string>$<new
string>$ are included, the entire range from
the previous Substitute command is used.

5. If <range> and $<0ld string>$<new string>$ are
omitted, substitution continues from where the
last substitution left off,

If no occurrence of <old string> is found, an error
message is printed.

Example:
*SA:5000$ALPHASBETAS From the first line
00950 BETA (K)=ABS (1.-LST (K)) to line 5000, replace

0 WRITE BETA (XK all occurrences of
04100 IF ZBETAIKS .LT.OEGOTO 9000 ALPHA with BETA.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft EDIT-80 User's Guide Page 23

CHAPTER 5

Pages

It is possible to divide an EDIT-80 file into sections
called pages, which are separated by page marks. The first
page of a file is always page 1, and EDIT-80 always enters
command level on page 1 of a multiple-page file. Each
subsequent page begins with a page mark and is numbered
sequentially. On any given page, the complete range of line
numbers (00000 to 99999 or any portion thereof) may be used.

If EDIT-80 encounters a form feed while reading in a file,
it will enter a page mark at that point in the file. If
EDIT-80 encounters a line number that is 1less than the
previous 1line number, it will automatically insert a page
mark so that proper line number sequence may be maintained.
When EDIT-80 writes a file out to disk, a form feed is
output with each page mark. Then, when the file is 1listed,
each new page of the file starts on a new physical page.

5.1 Specifying Page Numbers

In a single=-page file, only a line number is needed
to indicate <position>. In a multiple-page file,
EDIT-80 must know the page number as well as the
line number to determine a <position>. That is,
<position> is indicated by

<line>[/<page>]
where

<line> is ".", "A", "*" or a number of up to five
digits.

<page> is ".", "A", "*" or a number of up to five
digits. When specifying a page, the characters
".", "A" and "*" refer to the current page, the
first page and the last page, respectively. If
<page> is omitted, the current page is assumed,

Consequently, in a multiple-page file a <range>,
which may be indicated by

<position>:<position>
or
<position>!<number>

may also contain page numbers. If the page number
is omitted from the first line number in the range,
it is assumed to be the current page. If the page

Microsoft EDIT-80 User's Guide Page 24

5.2

5.3

number 1s omitted from the seccnd line number in
the range, it is assumed to be on the same page as
the first line number in the range.

Here are some examples of line numbers and ranges
that include page number specification:

100/2:%/% Line 100 on page 2 through
the last line on the last page

100/2:* Line 100 on page 2 through
the end of that page

100:*/5 Line 100 on the current page
through the last line on
page 5

100/* Line 100 on the last page

100/.:*/3 Line 100 on the current page
through the last line on
page 3

See Appendix C for more examples of range
specification.

Inserting Page Marks

Page marks may be inserted in the file at the
discretion of the user. To insert a page mark, use
the Mark command. The format is:

M<position>

The page mark is inserted immediately after
<position>. <position> must exist or an error
message will be printed.

The current line reference (".") is retained after
a Mark command is executed. That is, if <position>
is before ".", then "." will be moved to the next
page and will still point to the same physical
line,

Deleting Page Marks

Page marks are deleted with the K (Kill) command.
The format of the command is:

K/<page>

The K command deletes the page mark after <page>.
For example, in a four-page file, K/2 would delete

Microsoft EDIT-80 User's Guide Page 25

the second page mark (the page mark that started
page 3), and the pages would then be numbered 1, 2,
and 3. The last line number on <page> must be
lower than the first line number on <page>+1 before
a K/<page> command can be executed.

5.4 Begin Command

Use the Begin command to return to the beginning of
a page. The format of the Begin command is:

B[/<page>]
If <page> is omitted, the B command returns to the

beginning of page one.

5.5 Other Commands and Page Marks

1. A Delete command that crosses over a page
boundary will delete all lines in the range,
but will not delete the page mark.

2. A Print command that moves off the current page
will print the new page number prior to
printing the first 1line specified in the
command.

3. When output is being done with the List
command, a form feed will be printed with each
page mark, and the page number will be printed
on each page.

4, A range specified with an exclamation point may
cross a page boundary.

5. If the range specified in a Number command
crosses page boundaries, numbering will start
over on each new page; the first 1line number
will equal the increment. Consequently, in the
Number command, <start> and the first 1line of
<range> must be on the same page.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft EDIT-80 User's Guide Page 26

CHAPTER 6

Exiting EDIT-80

Section 1.3 introduced the Exit and Quit commands for
exiting EDIT-80, These two commands will be described more
completely in this chapter. An additional command, the
Write command, will also be presented.

6.1 Exit Command

The Exit command is used to write the file to disk
and return to TRSDOS. The format of the command
is:

E(<filename>] [(-<switch>]

The edited file is saved on the disk under
<filename>, When exiting a new file for the first
time, <filename> may be omitted. (In which case,
the opening filename is assigned.) Otherwise, a new
filename is required for each Exit. The previous
file serves as a back-up.

The optional <switch> controls the format of the
output. (See Section 6.5.)

6.2 Quit Command

The Quit command 1is wused to return to TRSDOS
without writing the edited file to disk. To Quit
editing, simply enter:

Q

After a Quit command, all changes entered during
the editing session are lost.

6.3 Write Command

The Write command writes the edited text to disk
and then returns to EDIT-80 command level. It does
not exit the editor, and the current position in
the file is not changed. The format of the command
is:

W([{<filename>] [-<switch>]
A filename is not required in the first Write of a

new file. A filename is required, however, in all
subsequent Write and Exit commands.

Microsoft EDIT-80 User's Guide Page 27

The optional <switch> controls the format of the
output. (See Section 6.5.)

6.4 Index Files

When reading in a file to be edited, EDIT-80
generates information it needs about each block of
the disk file. With a small file, this information
is generated in a few seconds, each time the file
is read in. However, with larger files (5K or
more), the time lag required to read in the file
becomes significant. Thus, when EDIT-80 saves a
file of 42 or more records on the disk, it also
saves a small file, separate from the text file,
containing the required information about the text
file.

This small file is called the index file, and it
can be read faster than the text file. EDIT-80
saves the index file under a filename that is the
same as the text filename (passwords not included),
with a 2 preceding the first two 1letters of the
extension. For example, if the file is called
FOO/MAC.SAM, the index file is called FOO/ZMA,

When EDIT-80 is asked to edit a file, it first
checks for an index file. If an index file exists,
EDIT=-80 reads the index file instead of the text
file, Care must be taken if the text file is
modified by another editor or changed and saved in
BASIC. The user must then delete the index file
prior to editing the text file again with EDIT-80,.
If the index file is not deleted, EDIT-80 will have
meaningless information about the text file.

6.5 Parameters

Wwhen reading in a file, EDIT-80 expects it to be in
its own representation. If the file appears to be
in another representation, EDIT-80 will add 1line
numbers and try to convert the file to EDIT-80
standard format. There are, however, several other
representations that EDIT-80 accepts, if the proper
switch is appended to the input filename. Switches
are always preceded by a dash (-):

filename [/ext] [.password] (:drive#] [-switch]

For example: FOO/BAS.SAM-BASIC

Microsoft EDIT-80 User's Guide Page 28

6.5.1 BASIC Switch

If the BASIC switch 1is appended to the input
filename, EDIT-80 will read the file using the
following algorithm:

1. All leading spaces and tabs are removed from
each line,

2, The first non-blank character must be a digit.

3. From 1 to 5 leading digits are converted to a
line number, More than 5 1leading digits
constitutes a fatal error.

4, A tab is inserted if the first non~digit is not
a space or a tab, If the first non-digit is a
space, it is replaced by a tab. If the first
non-digit is a tab, it is left alone.

5., On output, if UNSEQ (see Section 6.,5.2) has
been selected, leading zeros in the line number
are suppressed and the tab is converted to a
space.

Because BASIC uses 1line numbers to control the
sequence of program execution, BASIC users should
beware of renumbering with the N command.
Microsoft BASIC will ignore page marks from the
EDIT-80 file, so a BASIC file may have multiple
pages. Insure, however, that no 1line number
appears more than once in the program.

6.5.2 SEQ and UNSEQ Switches

If the SEQ switch is appended to the input
filename, EDIT-80 will use the same algorithm to
interpret the text file as with the BASIC switch.
However, when the file is output, it will be in
standard EDIT-80 format, unless the UNSEQ switch is
appended to the output filename.

The UNSEQ switch on input tells EDIT-80 to append
its own line numbers to the incoming f£file,
regardless of what it looks like. This switch must
be used if the incoming file has digits at the
beginning of lines with high bits on that are not
to be interpreted as line numbers,

On output, the UNSEQ switch must be specified (if
it hasn't been already) to output a non-standard
file. That is, if BASIC is specified on input and
UNSEQ is specified on output, the file will be
output in BASIC format. If BASIC was not specified

Microsoft EDIT-80 User's Guide Page 29

on input and UNSEQ is specified on output, the file
will be output with no line numbers and no trailing
tab. If the UNSEQ switch was specified on input
and the user wishes to output a standard file, the
SEQ switch on output will override the UNSEQ
switch.

Microsoft EDIT-80 User's Guide

Command

Alter

Begin

Delete

Exit

Find

Insert

Kill

List

Mark

Number

Print

Quit

APPENDIX A

Alphabetic Summary of Commands

Format and Description

A<range>
Enters Alter mode.

B [<page>]
Moves to the beginning of <page>.
Default is page 1.

D<range>
Deletes lines.

E[<filename>] [-<switch]
Writes the edited text to disk
and exits the editor.

F[<range>] [,<limit>] <enter> $<string>$

Finds occurrences of <string>.

I[<position>] [,<inc> ;<inc>]
Inserts lines beginning at <position>
using increment <inc>. With no
argument, continues with previous
Insert command.

K/<page>
Deletes the page mark at the end of
<page>.

L<range>
Prints lines at the line printer.

M<position>
Inserts a page mark after <position>,

N[<start>] [,<inc> ;1 <inc>] [=<range>]
Renumbers the lines in <range> so
they begin at <start> and increment
by <inc>.

P [<range>]

Prints lines at the terminal.
With no argument, prints the
next 20 lines.

Q
Exits the editor without writing

the edited text to disk.

11

6,

10

24

12

24

13

12

6,

Page 30

26

26

Microsoft EDIT-80 User's Guide Page 31

Replace R<range>[,<inc> ;<inc>] 18
Replaces line(s) using increment
<inc>,

Substitute S([<range>][,<limit>]<enter>|$<0ld string>$<new string>$
Replaces <old string> with <new string>, 22

Write W[<filename>] [-<switch>] 26
Writes the edited text to disk but
does not exit the editor,

eXtend X<range> 19
Allows insertion of text at the
end of a line,

Microsoft EDIT-80 User's Guide

Page 32

APPENDIX B

Alphabetic Summary of Alter Mode Subcommands

Command Format
A A
B [i]B
C [-1[i]C<ch>[...<ch>]
D [-]1[i]D
E E
F [-] [1]F$<text>$
G [1]1G<ch>
H [-]1H<text>$
I I<text>$
K [=] [1]K<ch>
L L
N N
0] [-][i]O<text>$
P P
Q Q

Action

Prints the remainder of the
line, enters the changes
and concludes altering of
that line

Inserts spaces

Replaces characters
Deletes characters
Enters the changes and
concludes altering of that
line

Finds <text>

Inserts i copies of <ch>
Deletes the remainder of
the line and enters the
insert mode

Inserts <text>

Deletes all characters up
to <ch>

Positions the cursor at the
beginning of the line

Restores the original line
and either moves to the
next line (if an A<range>
command is still in
progress) or returns to
command level

Deletes all characters up
to <text>

Recycles the cursor to the
current position

Exits Alter mode and
restores the original line

Microsoft EDIT-80 User's Guide

R [=] [i1]R<text>$
S (=] [i]S<ch>
T (-]T
W (-1 [1i]W
X [-1X
Z (-] [i]z
-1 —>
e

[=][i]<space>

<enter>

Shift «—

Page 33

Replaces i characters with
<text>

Finds <ch>

Deletes the remainder of
the line and concludes
altering of the line

Moves the cursor over words
Extends the line
Deletes words

Moves the cursor to the end
of the line

Deletes characters

Moves the cursor over
characters

Prints the remainder of the
line, enters changes and
concludes altering of that
line

Restores the original line,
stays in Alter mode and
repositions the cursor at
the beginning of the line.
Echoes as AY,

Microsoft EDIT-80 User's Guide Page 34

APPENDIX C

Summary of Notation

The notation used in this document may be defined as follows:
<line> = <number> | . I A ' *
<page> = <number> [. | A | *

<position> = <line>[/<page>]

<range> = <position>[:<position> | !<number>]
where:
<number> = <digit> | <number><digit>

<digit> o123 |4|s]e|7]8]s

Shorthand Notation for Ranges

The following "shorthand" forms of range specifications may be used
with EDIT-80 commands.

Shorthand Equivalent Range
Notation To Specified
/<page> A/<page>:*/<page> All of <page>.

/<pagel1>:/<page2> A/<pagel1>:*/<page2> The first line on <pagel>
through the last line on

<pagez2>.
s A/1s*/* The entire file.
<position>: <position>:*/* <position> through the end

of the file. e.qg.,
.2 is the same as ./.:*/*

:<position> A/1:<position> The first line in the file
through <position>. e.g.,
:t. is the same as A/1:./.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft EDIT-80 User's Guide Page 35

APPENDIX D

EDIT-80 Special Characters

<break> Aborts the command in progress
and returns to EDIT-80
command level.

- Types a tab.

Shift <« Erases the line being typed
and lets you start over.
When used in Alter mode, Shift<--
restores the original line,
stays in Alter mode and
repositions the cursor at the
beginning of the line.

Control characters are typed by holding down the shift
key, the down-arrow (}) key and the correct alpha key
at the same time.

Control O Suspends/resumes output (at
the terminal or line printer)
from an EDIT-80 command.

Control S Halts/resumes execution of
an EDIT-80 command.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft EDIT-80 User's Guide Page 36

APPENDIX E

Error Messages

Fatal Errors

Disk I/O errors are fatal. The corresponding TRSDOS error
message will be printed.

Any TRSDOS system error message is fatal.

Illegal line format

Occurs when EDIT-80 finds a line with strange contents or a
strange 1line number. This should not normally occur when
editing a file created by EDIT-80. It is usually caused by
reading files not meant for editing, such as binary files.

Edit Error Messages

Illegal command
Tells the user a nonexistent or ill-formed command was
typed.

Insufficient memory available

Occurs when the user has made enough changes to the file to
have exhausted EDIT-80's memory area. This should only
happen when a large file has many changes or when large
portions of code are being inserted or renumbered. A W
command should be done to compress memory.

No string given

Tells the user the F or S command was given without a search
string. This usually happens when using the F or S command
with no arguments prior to issuing an F or S command with
arguments, or when an <escape> without a search string is
typed following the range.

No such line(s)

This message 1is issued if a command references a line or
range which does not exist. Usually occurs when the proper
page number is omitted from the line or range.

Line too long

This message is issued when the user attempts to enter a
line longer than 255 characters. This may happen when the
line is read or as a result of a command which alters the
line.

Qut of order

Indicates that the line numbers in the file would not be in
ascending order if the command were to be executed. This
frequently happens when trying to insert where there is not

Microsoft EDIT-80 User's Guide Page 37

enough room or trying to delete a page mark.

Search fails

An informative message that tells the user a search was
unsuccessful.

Wrap around

This message is printed whenever a line greater than 99999
would be generated.

File Errors

File alreadﬁ exists

Issued 1f the user tries to give the name of an existing
file to a new file, or tries to rename a file using the name
of an existing file in an E or W command.

File not found

Issued if the file specified in a command could not be
found.

Illegal file specification
Informs the user that the command string contains an illegal
character of some kind.

Microsoft EDIT-80 User's Guide Page 38

APPENDIX F

Output File Format

Compilers and assemblers should ignore the line numbers and
page marks included in EDIT-80 output files (except when
included in listing files). Microsoft TRS=80 FORTRAN and
MACRO-80 both do so.

A line number consists of five decimal digits followed by a
tab character. All six bytes have the high order bit (bit
7) equal to one., It is not recommended that EDIT-80 files
be listed with the TRSDOS LIST command. Graphics characters
may appear in the line numbers. Use EDIT-80's Print command
instead.

When writing a file with =-BASIC set, the line numbers have
the high order bits equal to zero. Each line number is
followed by a space that has the high order bit equal to
zero.

A page mark is a form feed character with the high order bit
equal to one,

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft EDIT=-80 User's

Alter command . .
Alter mode

Alter mode subcommands

BASIC switch . . .
Begin command . .

Command level . .
Control-0 . . . &
Control-s . . - ™

Delete command . .
Delete key

Error messages . .
Exit command . . .
Extend command . .

Find command . . .
Form feed

Index files . . .
Insert command . .

Kill command . . .
Line feed . . . &
Line numbers . .
List command . . .
Mark command . . .
Number command . .
Page mark

Page numbers . . .
Parameters

Permanent lncrement

Print command . .
Quit command . . .
Replace command .

SEQUENCE switch .
Shift<--
Space bar . . .

Substitute command
Switches

Tab key . « « o &
TRSDOS L] - . - - »

Guide

Index

e « o 15
L] - L] 15
. . - 15-19’ 32

« « .« 28, 38
L] L] L] 25

-
« o« & 35
e s+ o 35

L] . . 11, 25
e o o 6, 33

« + o 36
L] . L] 6' 26
« o+ o 19

e « o« 20
« « o 23, 25, 38

s o e 6' 10

. s @ 5-7' 23’ 27, 38

L] L] L] 13’ 25' 28

23-25, 28

23

27

6, 10, 13

12, 25, 38

L] L] L] L] L]
L] L] . L] L]
* . L] [] .

. L] . 7' 26
. - L 11

28
6, 19, 33, 35
16
22
27

e o @ 16' 35
. o 5-6; 8; 26, 36' 38

Page 39

UNSEQUENCE switch

Write command .

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

MICROSOFT

utility software
manual

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

SECTION 1

1.1

1.2

- d d e d ek b —d eed b e ad d e d oad e D
. e« & e

MACRO-

Runnin
.1,

O -
=

—OWVONOWUMEWN= OGO WKN 2D W o=
(a3

>

res

o}
u

e
o

- . . ¢ e - . nrm - .
mummuuuunnuLod O WWWTD DD H =
- - . . @ . . LA

i e Sy o Y ¢ QS WS R ¢ , [U R ; RN —Y
. .

5.1
5.1
5.12
5.13

.5.14
.5.15
.5.16
«5.17
.5.18
.5.19
.5.20
.5.21
.5.22
.5.23
.5.24
.5.25
.5.26
.5.27
.5.28

Microsoft
Utility Software Manual

CONTENTS
80 Assembler e+ e s e e e e e =

g MACRO=80 ¢ ¢ « & o o o s s s =
Command Format . . .« « « « « .
Input/Output Devices
of MACRO-80 Source Files . . .
Statements « ¢« . . 4 ¢ e ¢ . .
Symbols . . ¢ ¢ & 4 4 4 e 4 e
Numeric Constants+ . . .
SErings . ¢« ¢ 4 i 4 e e s 4 W

sion Evaluation e e
Arithmetic and Logical Operators
Modes « &« ¢ o« ¢ 4 4« 4 o o s e W
Externals+ . . .

S as Operands .« « + « « « « .+ &
Operations ., .,
ASEG . . ¢ 4 ¢ 4 4 4« . .
COMMON « 4 & o o &« o o« o o o o &
CSEG « ¢ « ¢ o ¢ o o « s o o o
Define Byte

Define Character
Define Space « « « & « « « ¢ o« .
DSEG « « « o o o« o o o« & o o o
Define Word . . « « « ¢ o« o« &« =
END ¢« & o ¢ o v o o « o« o o o« =
ENTRY/PUBLIC . .

EQU e e e+ = = e

EXT/EXTRN « ¢ e+ & s+ e a
NAME + ¢ ¢ ¢ « o o« o o o o s+
Define Origin +« «. . . .
PAGE ¢ « ¢ ¢ v & & & o a s s o
SET & v ¢« &« « o s o o 4« o o o «
SUBTTL &+ v ¢ 4 « « o o s o « o
TITLE ¢« &« « « o o o + @
LCOMMENT & & ¢ v o & o

.PRINTX e o o o o e s & & s « =
B 3 1
LREQUEST & v & v &« « + o

.280

.8080 . . 4 44 4 e e e e
Conditional Pseudo Operaticns
Listing Control Pseudo Operations
Relocaticn Pseudo Operations
Relocation Before Loading

—
OCWwW eI Wu

11
11
11
12
13
14
14
14
14
15
15
15
16
16
16
16
17
17
17
17
18
18
18
18
18
19
19
20
20
20
20
21
22
22
24

. —
Y T T 1

— O W 0 -}

SECTION 2

NN
L] L]
b w N

w

NN O
. . . H

o~Joawumbdb w20

. [. . .
. . e . =

P S i e T I T 4

(o)
(Ve

Using

w0

and Block

Terms -
REPT-ENDM
IRP-ENDM
IRPC-ENDM
MACRO .
ENDM
EXITM .
LOCAL

Special Macro Operators anc Forms
280 Pseudo-ops

Sample Assembly
MACRO-80 Errors

Compatability with Other Assemblers
Format of Listings
.1 Symbol Table Listing
Cross Reference Facility

1.11

LINK-80 Linking Loader

Running LINK-80

2.1.1
2.1.2

LINK-80 Commands
LINK-80 Switches

Sample Link

Format of LINK Compatlble Ob]ec* lees
LINK-80 Error Messages . e e e .
Program Break Information

Pseudo

.

Operations

.

24
24
25
26
26
26
28
28
29
29
30
31
32
33
34
35
36

38

38
38
39
41
42
44
45

Microsoft Utility Software Page 5

SECTION 1

MACRO-80 Assembler

Assembly language programs and subroutines are assembled
with MACRO-80. Just as the FORTRAN compiler generates
relocatable object code from a FORTRAN program, MACRO-80
generates relocatable object code from an assembly language
program. Running MACRO-80 is very similar to running the
FORTRAN compiler, and the command format is identical. The
default extension for a MACRO-80 source file is /MAC.

1.1 Running MACRO-80

When you give TRSDOS the command

M80

(diskette #1 must be in the disk drive), you are
running the MACRO-80 assembler. When the assembler
is ready to accept commands, it prompts the user
with an asterisk. To exit the assembler, use the
<break> key.

Command lines are also supported by MACRO-80.
After executing a command 1line, the assembler
automatically exits to the operating system.

1.1.1 Command Format

An assembler command conveys the name of the source
file you want to assemble, and what options you
want to use. Here is the format for an assembler
command (square brackets indicate optional):

[object filename] [,listing filename]=source filename{-switch...]

NOTE
All filenames must be in TRSDOS filename
format:
filename[/ext] [.password] [:drive#]. If you
are using the assembler's default

extensions, it is not necessary to specify
an extension in an assembler command.

Microsoft Utility Software Page 6

Let's 1look individually at each part of the
assembler command:

1.

Object filename

To create a relocatable object file, this part
of the commanéd must be included. It is simply
the name that you want to call the cbiect file.
The default extension for the obiject filename
is /REL.

Listing fiiename

To create a listing £ile, this part of the
command must be included, t is simply the
name that you want to call tne 1listing file.
The default extension for the listing file is
/LST,

Source filename

An assembler ccmmand must always include a
source filename ~- that 1is how the assembler
"knows" what to assemble. It is simply the
name of a MACRO-80 program vcu have saved on
disk. The default extension fcr a MACRO-80
source filename is /MAC. The source filename
is always preceded by an equal sign in an
assembler command.

Examples (asterisk is typed by M80):

*=TEST hssemble the program TEST/MAC

without creating an object
file or listing file.

*TEST,TEST=TEST Assemble the program

TEST/MAC. Create a reloca-
table object file called
TEST/REL and a listing file
called TEST/LST.

* ,TEST.PASS=TEST.PASS Assemble the program

TEST/MAC.PASS and create a
listing file called
TEST/LST.FASS (No object
file crezted.)

*TESTOBJ=TEST Assemble the program TEST/MAC

and create an object file
callecd TESTO3J/REL. (No
listing file created.).

Switch

A switch on the end ¢f & commantd svecifies a
special parameter tc be used during assembly.
Switches are always preceied by a dash (-).
More than one switch may be used in the same

Microsoft Utility Software Page 7

1-1.2

command. The available switches are:

Switch Action
o] Print all 1listing addresses in
octal.
H Print all listing addresses in

hexadecimal (default condition).

c Force generation of a Cross
reference file.

2 Assemble Z80 (Zilog format)
mnemonics (default condition).
I Assemble 8080 mnemonics.
Examples:

*CT.ME,CT.ME=CT.ME-O Assemble the program
CT/MAC.ME. Create a listing
file called CT/LST.ME and
an ocbject file called
CT/REL.ME. The addresses
in the listing file will
be in octal.

*LT,LT=LT-C Assemble the program LT/MAC.
Create an object file called
LT/REL, a listing file
called LT/LST, and a
cross reference file called
LT/CRF. (See Section 1.12.)

Input/Output Device Names

In the commands discussed so far, it 1is assumed
that all files are read from and written to the
disk. To use an I/0 device other than the disk,
specify the device name in place of the filename in
the assembler command.

The device names supplied by TRSDOS are:

*KI Keyboard Input
*DO Display Output
*PR Printer Output

(*DO and *PR are available only with TRSDOS Version
2.2 or later.)

Microsoft Utility Software Page 6

1.2

1.2.1

Examples:

TEST, *PR=TEST Assemble the »

listing file, T
the printer.

TEST, *DO=TEST Assemtle the program TEST/MAC.
' Create an cbject file callead
TEST/MAC and cutrut the
listing file, TEST/LST at
the video cdisplay.

1 =*KI KI is used only if you
want to input a source file
from the keyboarc. This
command ascembles the source
file reacd from the
keyboaréd without creating
a REL or LST file.

Format 95 MACRO-B0 Source Files

In general, MACRO-80 accepts a source file that 1is
almost identical to source files for INTEL
compatible assemblers. Input source lines of up to
132 characters in length are acceptable.

MACRO-80 preserves lower case letters 1in quoted
strings and comments. All symbcls, opcodes and
pseudo-opcodes typed in lower czse will be
converted to upper case.

NOTE

If the source file includes 1line numbers
from an editor, each byte o©f the line
number must have the high bit on,. Line
numbers from Microscft's EDIT-80 Editor are
acceptable.

Statements

Source files input to MACRO-80 consist of
statements of the form:

[label:[:]] [operator] [arcuments) -~ [;comment]

With the exception of the ISIS assembler § controls
(see Sectien 1.10), it 1s not necessary that

Microsoft Utility Software Page 9

statements begin in column 1, Multiple blanks or
tabs may be used to improve readability.

If a label is present, it is the first item in the
statement and 1is immediately followed by a colon.
If it is followed by two colons, it is declared as

PUBLIC (see ENTRY/PUBLIC, Section 1.5.10). For
exmple:
FOO:: RET

i, equivalent to

PUBLIC FOO
FOO: RET

The next item after the label (or the first item on
the 1line i, no label is present) 1s an operator.
An operator may be an opcode (8080 or z80
mnemonic), pseudo-op, macro call or expression.
The evaluation order is as follows:

1. Macro call
2. Opcode/Pseudo operation
3. Expression

Instead of flagging an expression as an error, the
assembler treats it as if it were a DB statement
(see Section 1.5.4).

The arguments following the operator will, of
course, vary in form according to the operator.

A comment always begins with a semicolon and ends
with a carriage return. A comment may be a line by
itself or it may be appended to a line that
contains a statement. Extended comments can be
entered using the .COMMENT pseudo operation (see
Section 1.5.,19).

1.2.2 Symbols

MACRO-80 symbols may be of any length, however,
only the first six characters are significant. The
following characters are legal in a symbol:

A-2 0-9 $. ? @

The underline character is also legal in a symbol.
A symbol may not start with a digit. When a symbol
is read, lower case is translated into upper case,.
If a symbol reference 1is followed by #% it 1s

Microsoft Utility Software Page 10

declared external (see also the EXT/EXTRN
pseudo-op, Section 1.5.12).

1.2.3 Numeric Constants

The default base for numeric constants is decimal.
This may be changed by the .RADIX pseudo-op (see
Section 1.5.21). Any base from 2 (binary) to 16
(hexadecimal) may be selected. When the base is
greater than 10, A-F are the digits following 9.
If the first digit of the number is not numeric
(i.e., A-F), the number must be preceded by a zero.
This eliminates the use of zero as a leading digit
for octal constants, s 1in previous versions of
MACRO-80. o

Numbers are 16-bit unsigned gquantities. A number
is always evaluated in the current radix unless one
of the following special notations is used:

nnnnB Binary

nnnnD Decimal

nnnnO Octal

nnnnQ Octal

nnnnH Hexadecimal
X'nnnn' Hexadecimal

Overflow of a number beyond two bytes 1s 1ignored
and the result is the low order 16-bits.

A character constant is a string comprised cf zero,
one or twec ASCII characters, celimited by guctation
marks, and used in a non-simple expression. For
example, in the statement

DB ‘A + 1
'A' is a character constant. But the statement
DB ‘Al

uses 'A' as a string because it 1is in a simple
expression. The rules for character constant
delimiters are the same as for strings.

A character constant comprised of one character has
as 1its wvalue +the ASCII value of that character.
That is, the high order byte of the value is zero,
and the low order byte is the ASCII value cf the
character. For example, the value c¢f the constant
'A' is 41H.

A character constant comprised of two characters
has as its wvalue +the ASCII value cf the first

Microsoft Utility Software Page 11

character in the high order byte and the ASCII
value of the second character in the low order
byte. For example, the wvalue of the character
constant "AB" is 41H*256+42H.

1.2.4 Strings

A string is comprised of zero or more characters
delimited by quotation marks. Either single or
double guotes may be used as string delimiters.
The delimiter gquotes may be used as characters if
they appear twice for every character occurrence
desired. For example, the statement

DB "I am ""great"" today"

stores the string
I am "great" today

If there are zero characters between the
delimiters, the string is a null string.

1.3 Expression Evaluation

1.3.1 Arithmetic and Logical Operators

The following operators are allowed in expressions.
The operators are listed in order of precedence.

NUL

LOW, HIGH

*, /, MOD, SHR, SHL

Unary Minus

+'—

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR
Parentheses are used to <change the order of
precedence. During evaluation of an expression, as

soon as a new operator 1s encountered that has
precedence less than or egqual to the last operator

Microsoft Utility Software Page 12

encountered, all operations up to the new operator
are performed. That 1s, subexpressions involving
operators of higher precedence are computed first.

All operators except +, -, *, / must be separated
from their operands by at least one space.

The byte isclation operators (HIGH, LOW) 1isolate
the high or low order 8 bits of an Absolute 16-bit
value. If a relocatable value is supplied as an
operand, HIGH and LOW will treat it as if it were
relative to location zero.

1.3.2 Modes

All symbols used as operands in expressions are 1n
one of the following modes: Absolute, Data
Relative, Program (Code) Relative or COMMON. (See
Section 1.5 for the ASEG, CSEG, DSEG and COMMON
pseudo=-ops.) Symbols assembled under the ASEG, CSEG
(default), or DSEG pseudo-ops are in Absolute, Code
Relative or Data Relative mode respectively. The
number of COMMON modes in a program is determined
by the number of COMMON blocks that have been named
with the COMMON pseudo-op. Two COMMON symbols are
not in the same mode unless they are in the same
COMMON block.

In any operation other than addition or
subtraction, the mode of both operands must be
Absolute.

If the operation is addition, the following rules
apply:

1. At least one of the operands must be Absolute.
2, Absolute + <mode> = <mode>

If the operation is subtraction, the following
rules apply:

1. <mode> - Absolute = <mode>

2. <mode> - <mode> = Absolute
where the two <mode>s are the same.

Each intermediate step in the evaluation of an
expression must conform to the above rules for
modes, or an error will be generated. For example,
if FOO, BAZ and ZAZ are three Program Relative
symbols, the expression

Microsoft Utility Software Page 13

FOO + BAZ -~ ZAZ

will generate an R error because the first step
(FOO + BAZ) adds two relocatable values. (One of
the values must be Absolute.) This problem can
always be fixed by inserting parentheses. So that

FOO + (BAZ - ZAZ)

is 1legal because the first step (BAZ - ZAZ)
generates an Absolute value that is then added to
the Program Relative value, FOO.

1.3.3 Externals

Aside from its classification by mode, a symbol is

either External or not External. (See EXT/EXTRN,
Section 1.5.12.) An External value must be
assembled into a two-byte field. (Single-byte

Externals are not supported.) The following rules
apply to the use of Externals in expressions:

1. Externals are legal only in addition and
subtraction.

2. If an External symbol is used in an expression,
the result of the expression 1is always
External.

3. When the operation is addition, either operand
(but not both) may be External.

4. When the operation is subtraction, only the
first operand may be External.

Microsoft Utility Software

Page 14
1.4 Opcodes as Operands
80B0 opcodes are valid one-byte operands. Note
that only the first byte is a valid operand. For
example:
MVI A, (JMP)
ADI (cpI)
MVI B, (RNZ)
CPI (INX EH)
ACI (LXI B)
MVI c,MOV A,B

Errors will be generated if more than one byte 1is
included in the operand -- such as (CPI 5), LXI
B,LABEL1) or (JMP LABEL2).

Opcodes used@ as one-byte operands need not be
enclosed in parentheses.
NOTE

Opcodes are not valid operands in 280 mode.

1.5 Pseudo Operations

1.5.1 ASEG

ASEG

ASEG sets the location counter to an absolute
segment of memory. The location of the absolute
counter will be that of the last ASEG (default 1is
0), wunless an ORG is done after the ASEG to change
the location. The effect of ASEG is alsc achieved
by using the code segment (CSEG) pseudo operation
and the -P switch in LINK-80. See also Section
1.5.27.

1.5.2 COMMON
COMMON /<block name>/

COMMON sets the location counter to the selected
common block in memory. The location is always the
beginning of the area so that compatibility with
the FORTRAN COMMON statement is maintained. If
<block name> is omitted or consists of spaces, it

is considered to be blank common. See also Section
1.5.27.

Microsoft Utility Software Page 15

1.5.3 CSEG

CSEG

CSEG sets the location counter to the code relative
segment of memory. The location will be that of
the last CSEG (default is 0), unless an ORG is done
after the CSEG to change the location. CSEG is the
default condition of the assembler (the INTEL
assembler defaults to ASEG). See also Section
1.5.27.

1.5.4 Define Byte

DB <exp>[,<exp>...]
DB <string>([<string>...]

The arguments to DB are either expressions or
strings. DB stores the values of the expressions
or the characters of the strings in successive
memory locations beginning with the current
location counter.

Expressions must evaluate to one byte. (If the
high byte of the result is 0 or 255, no error is
given; otherwise, an A error results.)

Strings of three or more characters may not be used
in expressions (i.e., they must be immediately
followed by a comma or the end of the line). The
characters in a string are stored in the order of
appearance, each as a one-byte value with the high
order bit set to zero.

Example:

0000 4142 DB 'AB'

0002 42 DB 'AB' AND OFFH

0003 41 42 43 DB 'ABC'

1.5.5 Define Character
DC <string>

DC stores the characters in <string> in successive
memory locations beginning with the current
location counter. As with DB, <characters are
stored 1in order of appearance, each as a one-byte
value with the hnigh order bit set to zero.

However, DC stores the last character of the string
with the high order bit set to one. An error will

Microsoft Utility Software Page 16

result if the argument to DC is a null string.

1.5.6 Define Space

DS <exp>

DS reserves an area of memory. The value of <exp>
gives the number of bytes to be allocated. All
names used in <exp> must be previously defined
(i.e., all names known at that point on pass 1).
Otherwise, a V error is generated during pass 1 and
‘a U error may be generated during pass 2. If a U
error is not generated during pass 2, a phase error
will probably be generated because the DS generated
no code on pass 1.

1.5.7 DSEG

DSEG

DSEG sets the location counter to the Data Relative
segment o0f memory. The location of the data
relative counter will be that o©f the last DSEG
(default is O0), unless an ORG is done after the
DSEG to change the location. See also Section
1.5.27.

1.5.8 Define Word

DW <exp>|[,<exp>...)
DW stores the values of the expressions in
successive memory locations beginning with the
current location counter. Expressions are

evaluated as 2-byte (word) values.

1.5.9 END
END [<exp>]

The END statement specifies the end of the program.
If <exp> is present, it is the start address of the
program. If <exp> is not present, then no start
address is passed to LINK-80 for that program.

Microsoft Utility Software Page 17

1.5.10 ENTRY/PUBLIC

ENTRY <name>[,<name>...]
or
PUBLIC <name>([,<name>...]

ENTRY or PUBLIC declares each name in the 1list as
internal and therefore available for use by this
program and other programs to be loaded
concurrently. All of the names in the list must be
defined in the current program or a U error
results. An M error is generated if the name is an
external name or common-blockname.

1.5.11 EQU

<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp>

is external, an error 1is generated. If <name>
already has a value other than <exp>, an M error 1is
generated.

1.5.12 EXT/EXTRN

EXT <name> [, <name>...]
or
EXTRN <name>|[,<namne>,...]

EXT or EXTRN declares that the name(s) in the list
are external (i.e., defined in a different
program). If any item in the 1list references a
name that 1is defined in the current program, an M
error results. A reference to a name where the
name 1is followed immediately by two pound signs
(e.g., NAME##) also declares the name as external.

"1.5.13 NAME
NAME {('modname’)

NAME defines a name for the module. Only the first
six characters are significant in a module name. A
module name may also be defined with the TITLE
pseudo-op. In the absence of both the NAME and
TITLE pseudo-ops, the module name is created £from
the source file name.

Microsoft Utility Software Page 18

1.5.14 Define Origin

ORG <exp>

The location counter is set to the value of <exp>
and the assembler assigns generated code starting
with that value. All names used in <exp> must be

known on pass 1, anéd the value must either be
absolute or in the same area as the location
counter,

1.5.15 PAGE
PAGE [<exp>]

PAGE causes the assembler to start a new output
page. The value of <exp>, if included, becomes the
new page size (measured in lines per page) and must
be in the range 10 to 255. The default page size
is 50 lines per page. The assembler puts a form
feed character in the listing £ile at the end of a
page.

1.5.16 SET
<name> SET <exp>

SET 1is the same as EQU, except no error 1is
generated if <name> is already defined.

1.5.17 SUBTTL
SUBTTL <text>

SUBTTL specifies a subtitle to be 1listed on the
line after the title (see TITLE, Section 1.5.18) on
each page heading. text> is <truncated after 60
characters. Any number of SUBTTLs may be given in
a program.

1.5.18 TITLE
TITLE <text>

TITLE specifies a title to be listed on the first
line o0f each page. If more than one TITLE is
given, a Q error results. The £first six characters
of the +title are used as the module name unless a
NAME pseudo operation is used. If neither a NAME
or TITLE pseudo~-op 1is used, the module name 1s
created from the source filename.

Microsoft Utility Software Page 19

1.5.19 .COMMENT

.COMMENT <delim><text><delim>

The first non-blank character encountered after
.COMMENT 1is the delimiter. The following <text>

comprises a comment block which continues until
next occurrence of <delimiter> is encountered.
example, using an asterisk as the delimiter,
format of the comment block would be:

.COMMENT *
any amount of text entered
here as the comment block

*

.

;return to normal mode

1.5.20 .PRINTX

.PRINTX <delim><text><delim>

the
For
the

The first non-blank character encountered after
.PRINTX 1is the delimiter. The following text is
listed on the terminal during assembly until
another occurrence of the delimiter is encountered.
.PRINTX is useful for displaying progress through a

long assembly or for displaying the value

conditional assembly switches. For example:
IF CPM
.PRINTX /CPM version/
ENDIF
NOTE

.PRINTX will output on both passes. If
only one printout is desired, use the IF]
or IF2 pseudo-op.

of

Microsoft Utility Software Page 20

1.5.21

1.5.22

1.5.23

1.5.24

.RADIX

.RADIX <exp>

The default base (or radix) for all constants 1is
decimal. The .RADIX statement allows the default

radix to be changed to any base in the range 2 to
16, For example:

LXI H,OFFH
.RADIX 16
LXI H,OFF
The two LXIs in the example are identical. The

<exp> in a .RADIX statement is always in decimal
radix, regardless of the current radix.

.REQUEST

.REQUEST <filename>[,<filename>...]

.REQUEST sends a reguest to the LINK-80 loader to
search the filenames in the 1list for undefined
globals before searching the FORTRAN library. The
filenames in the 1list shouléd be in the form of
legal MACRO-80 symbols. They should not include
filename extensions or disk specifications. The
LINK-80 loader will supply its default extension
and will assume the currently selected disk drive.

.280

.280 enables the assembler to accept Z80 opcodes.
This 1is the default condition. Z80 mode may also
be set by appending the Z switch to the MACRO-80
command string -- see Section 1.1.2.

. 8080

.B8080 enables the assembler to accept 8080 opcodes.
8080 mode may also be set by appending the I switch
to the MACRO-80 command string -- see Secticn
1.1.2,

Microsoft Utility Software Page 21

1.5.25 Conditional Pseudo Overations

The conditional pseudo operations are:

IF/IFT <exp> True if <exp> 1s not 0.
IFE/IFF <exp> True if <exp> is 0.

IF1 True if pass 1.

IF2 True if pass 2.

IFDEF <symbol> True if <symbol> is defined or

has been declared External.

IFNDEF <symbol> rue if <symbol> is undefined
or not declared External.

IFB <arg> True if <arg> is blank. The
angle brackets around <arg>
are required.

IFNB <arg> True if <arg> is not blank.
Used for testing wnen dummy
parameters are supplied. The
angle brackets around <arg>
are required.

All conditionals use the following format:

IFxx [argument]
[ELSE
.]
ENDIF
Conditionals may be nested to any level. Any

argument to a conditional must be known on pass

to avoid V errors and incorrect evaluation. For
IF, IFT, 1IFF, and IFE the expression must involve
values which were previcusly defined nd the
expression must be absolute. If the name 1is

defined after an IFDEF or IFNDEF, pass | considers
the name to be undefined, but it will be defined on
pass 2.

ELSE

Each conditional pseudo operation may optionally be
used with the ELSE pseudo operation which allows
alternate code to be generated when the opposite

condition exists. Only one ELSE is permitted for a

Microsoft Utility Software Page 22

given IF, and an ELSE is always bound to the most
recent, open IF. A conditional with more than one
ELSE or an ELSE without a conditional will cause a

C error.

ENDIF

Each IF must have a matching ENDIF to terminate the
conditional. Otherwise, an 'Unterminated

conditicnal’ message is generated at the end of
each pass. An ENDIF without a matching IF causes a
C error.

1.5.26 Listing Control Pseudo Operations

Output to the listing file can be contrcllied by two
pseudo-ops:

.LIST and . XLIST

If a listing is not being made, these pseudo-ops
have no effect. .LIST is the default condition.
When a .XLIST is encountered, source and oObject
code will not be listed until a .LIST is
encountered.

The output of c¢ross reference information is

controlled by .CREF and .XCREF, If the cross
reference facility (see Secticn 7.72) has not been
invoked, .CREF and .XCREF have no effect. The

default condition is .CREF. When a .J.XCREF 1is
encountered, no cross reference information 1is
output until .CREF 1s encountered.

The output of MACRO/REPT/IRP/IRPC expansions 1s

controlled Lty three pseudo-ops: .LALL, .SALL, and
.XALL, .LALL lists the complete macro text for all
expansions. .SALL lists only the object code
produced by a macro and not its text. .XALL is the
default condition; it is similar +*c .SALL, except
a source line is listed only if it cenerates object
code.

1.5.27 Relocation Pseudo Operations

The ability to create relocatable mocdules is one of

the major features of MACRO-BO. Relocatable
modules offer the advantages of easier coding and
faster testing, Gebucggincg and wmodifying. In

addition, it is possible to specify segments o=
assembled code that will later be loaded into RAM
(the Data Relative segment) and ROM/PROM (the Code
Relative segment). The pseudo operations that

Microsoft Utility Software Page 23

select relocatable areas are CSEG and DSEG. The
ASEG pseudo-op 1s used to generate non-relocatable
(absolute) code. The COMMON pseudo-cp creates a
common data area for every COMMON block that is
named in the program.

The default mode for the assembler is Code
Relative. That 1s, assembly becgins with a CSEG
automatically executed and the location counter in
the Code Relative mode, pointing to location 0 in
the Code Relative segment of memory. All
subsequent instructions will be assembled into the
Code Relative segment of memory until an ASEG or
DSEG or COMMON pseudo-op is executed. For example,
the first DSEG encountered sets the location
counter to location zero in the Data Relative
segment of memory. The following code is asembled
in the Data Relative mode, that is, it is assigned
to the Data Relative segment of memory. If a
subsequent CSEG is encountered, the location
counter will return to the next free location 1in
the Code Relative segment and so on.

The ASEG, DSEG, CSEG pseudo-ops never have
operands. If you wish to alter the current value
of the location counter, use the ORG pseudo-op.

ORG Pseudo-op

At any time, the value of the location counter may
be changed by use of the the ORG pseudo-op. The
form of the ORG statement is:

ORG <exp>

where the value of <exp> will be the new vwvalue of
the location counter in the current mode. All
names used in <exp> must be known on pass 1 and the
value of <exp> must be either Absolute or in the
current mode of the locaticn counter. For example,
the statements

DSEG
ORG 50

set the Data Relative location counter to 50,
relative to the start of the Data Relative segment

of memory. —_

LINK-80

The LINK-80 linking loader (see Secticn 2 of <this
manual) combines the segments and creates each
relocatable meocule 1n memory when the prograr is
loaded. The origins oI the relccatable secments
are not fixed until the program is loaded and the
origins are assigned by LINK-80. The command to

Microsoft Utility Software Page 24

LINK-80 may contain user-specified origins through
the use of the ~-P (for Code Relative) and -D (for
Data and COMMON segments) switches.

For example, a program that begins with the
statements

ASEG
ORG 800H

and is assembled entirely in Absolute mode will
always load beginning at 800 wunless the ORG
statement is changed in the source file. However,
the same program, assembled in Code Relative mode
with no ORG statement, may be loaded at any
specified address by appending the -P:<address>
switch to the LINK-80 command string.

1.5.28 Relocation Before Loading

Two pseudo-ops, .PHASE and .DEPHASE, allow code to
be 1located in one area, but executed only at a
different, specified area.

For example:

0000' .PHASE 100HE
0100 CD 0106 FOO: CRLL BAZ
0103 C3 0007 JMP 200
0106 c9 BAZ: RET

.DEPHASE
0007' C3 0005 Z200: JMP 5

All labels within a .PHASE block are defined as the
absolute wvalue from the origin of the phase area.
The code, however, is loaded in the current area
(i.e., from 0' in this example). The code within
the block can later be moved to 1C0H and executed.

1.6 Macros and Block Pseudo Operations
The macro facilities provided by MACRO-80 include
three repeat pseudo operations: repeat (REPT),
indefinite repeat (IRP), and 1indefinite repeat
character (IRPC). A macro definition operation
(MACRO) is alsoc provided. Each cf these four macro
operations is terminated by the ENDM pseudo
operation,

1.6.1 Terms

For the purposes of discussion of macros and block

Microsoft Utility Software Page 25

1.6.2

operations, the following terms will be used:

1.

<dummy> 1is used to represent a dummy parameter.
All dummy parameters are legal svmbols that
appear in the body of a macro expansion.

<dummylist> is a list of <dummy>s separated by
commas.

<arglist> is a list of arguments separated by
commas. <arglist> must be delimited by angle
brackets. Two angle brackets with no
intervening characters (<>} or two commas with
no intervening characters enter a null argument
in the 1list. Otherwise an argument 1is a
character or series of characters terminated by
a comma or >, With angle brackets that are
nested inside an <arglist>, one level of
brackets 1is removed each time the bracketed
argument 1is wused 1in an <arglist>. (See
example, Section 1.6.5.) A guoted string 1s an
acceptable argument and is passed as such.
Unless enclosed in brackets or a quoted string,
leading and trailing spaces are deleted £from
arguments.

<paramlist> is used to represent a list of
actual parameters separated by commas. No
delimiters are regquired (the list 1s terminated
by the end of line or a comment), but the rules
for entering null parameters and nesting
brackets are the same as described for
<arglist>. (See example, Section 1.6.5.)

REPT-ENDM

REPT <exp>

ENDM

The block of statements between REPT and ENDM 1is

repeated <exp> times. <exp> 1s evaluated as a
16~bit unsigned number. If <exp> contains any
external or undefined terms, an error is generated.
Example:

SET Q

REPT 10 ;generates DB1-DB10

SET X+1

DB X

ENDM

Microsoft Utility Software Page 26

1.6.3 IRP-ENDM

IRP <dummy>,<arglist>

ENDM

The <arglist> must be enclosed in angle brackets.
The number of arguments in the <arglist> determines
the number of times the block of statements 1is
repeated. Each repetition substitutes the next
item in the <arglist> for every occurrence of
<dummy> in the block, If the <arglist> 1s null
(i.e., <>), the block is processed once with each
occurrence of <dummy> removed. For example:

IRP X,1,2,3,4,5,6,7,8,9,10>
DB X
ENDM

generates the same bytes as the REPT example.

1.6.4 IRPC-ENDM

IRPC <dummy>,string (or <string>)

ENDM

IRPC is similar to IRP but the arglist is replaced
by a string of text and the angle brackets around

the string are cptional. The statements 1n the
block are repeated once for each character in the
string. Each repetition substitutes the next

character in the string for every cccurrence of
<dummy> in the block. For example:

IRPC X,0123456789

DB X+1
ENDM

generates the same ccde as the two previous
examples.

1.6.5 MACRO

Often it is convenient to be able to generate a
given sequence of statements from various places in
a program, even though different parameters may be
required each time the seguence is used. This

capability is provided by the MACRC statement. The
form is

Microsoft Utility Software Page 27

<name> MACRO <dummylist>

ENDM

where <name> conforms to the rules for forming
symbols. <name> 1is the name that will be used to
invoke the macro. The <dummy>s in <dummylist> are
the parameters that will be changed (replaced) each
time the MACRO is invoked. The statements before
the ENDM comprise the body of the macro. During
assembly, the macro is expanded every time it 1is
invoked but, unlike REPT/IRP/IRPC, the macro is not
expanded when it is encountered.

The form of a macro call is
<name> <paramlist>

where <name> is the name supplied in the MACRO
definition, and the parameters in <paramlist> will
replace the <dummy>s in the MACRO <dummylist> on a
one-to-one basis. The number of items 1in
<dummylist> and <paramlist> is limited only by the
length o©of a 1line. The number of parameters used
when the macro is called need not be the same as
the number of <dummy>s in <dummylist>. If there
are more parameters than <dummmy>s, the extras are
ignored. If there are fewer, the extra <dummy>s
will be made null. The assembled code will contain
the macro expansion code after each macro call.

NOTE

A dummy parameter in a MACRO/REPT/IRP/IRPC
is always recognized exclusively as a
dummmy parameter. Register names such as A
and B will be changed in the expansion 1if
they were used as dummy parameters.

Microsoft Utility Software

Page 28

Here is an example of a MACRO definition that

defines a macro called FOO:

FOO MACRO X
Y SET 0
REPT X
Y SET Y+1
DB Y
ENDM
ENDM

This macro generates the same code as the
three examples when the call

FOO 10

is executed.

Another example, which generates the same

previous

code,

illustrates the removal of one level of brackets

when an argument is used as an arglist:

FOO MACRO X
IRP Y, <X>
DB Y
ENDM
ENDM

When the call

FOO <1,2,3,4,5,6,7,8,9,10>

is made, the macro expansion looks like this:

IRP Y, <1,2,3,4,5,6,7,8,9,10
DB Y
ENDM

1.6.6 ENDM

>

Every REPT, IRP, IRPC and MACRO pseuco-op mst be
terminated with the ENDM pseudo-oC. therwise, the
'Unterminated REPT/IRP/IRPC/MACRO"’ message is
generated at the end of each pass. An unmatched

ENDM causes an 0O error.

1.6.7 EXITM

The EXITM pseudo-op 1is used to terminate a
REPT/IRP/IRPC or MACRO call. vWhen an EXITM is

executed, the expansion is exitecd immed
any remaining expansion or repetitl

ately and

is not

generated. If the block containiné the EXITM 1is

nested within another block, the outer

level

Microsoft Utility Software Page 29

1.6.8

1.6.9

continues to be expanded.

LOCAL

LOCAL <dummylist>

The LOCAL pseudo-op is allowed only inside a MACRO
definition. When LOCAL is executed, the assembler
creates a unigque symbol for each <dummy> in
<dummylist> and substitutes that symbol for each
occurrence of the <dummy> in the expansion. These
unique symbols are usually used to define a label
within a macro, thus eliminating multiply-defined
labels on successive expansions of the macro. The
symbols created by the assembler range from ..0001
to ..FFFF. Users will therefore want to avoid the
form ..nnnn for their own symbols. If LOCAL
statements are used, they must be the first
statements in the macro definition.

Special Macro Operators and Forms

& The ampersand is used in a macro expansion to
concatenate text or symbols. A dummy
parameter that is in a quoted string will not
be substituted in the expansion unless it is
immediately preceded by &. To form a symbol
from text and a dummy, put & between them.
For example:

ERRGEN MACRO X

ERROR&X: PUSH B
MVI B,'s&X'
JMP ERRCR
ENDM

In this example, the call ERRGEN A will
generate:

ERRORA: PUSH B
MVI B,'A'
JMP ERROR

In a block operation, a comment preceded by
two semicolons 1is not saved as part of the
expansion (i.e., it will not appear on the
listing even under .LALL). A comment preceded
by one semicolon, however, will be preserved
and appear in the expansion.

-
-

! When an exclamation point 1is used in an
argument, the next character 1is entered
literally (i.e., !; and <;> are equivalent).

Microsoft Utility Software Page 30

1.7

NUL NUL is an operator that returns +true if its
argument (a parameter) is null, The remainder
of a line after NUL is considered to be the
argument to NUL. The conditional

IF NUL argument

is false if, during the expansion, the first
character of the argument is anything other
than a semicolon or carriage return. It 1is
recommended that testing for null parameters
be done using the IFB and IFNB conditionals.

Using 280 Pseudo-ops

The following 280 pseudo-ops are valid. The
function of each pseudo-op is eguivalent to that of
its 8080 counterpart.

280 pseudc-op Equivalent 8080 pseudo-op
COND IFT
ENDC ENDIF
*EJECT PAGE
DEFB DB
DEFS DS
DEFW DW
DEFM DB
DEFL SET
GLOBAL PUBLIC
EXTERNAL EXTRN

The formats, where different, conform to the 8080
format. That 1is, DEFB and DEFW are permitted a
list of arguments (as are DB and DW), and DEFM 1is
permitted a string or numeric argument (as is DB).

Microsoft Utility Software Page 31

1.8 Sample Assembly
DOS READY
M80
*EXMPL1,TTY:=EXMPL1
MAC80 3.2 PAGE 1
00100 ;CSL3 (P1,P2)
00200 :SHIFT P1 LEFT CIRCULARLY 3 BITS
00300 ;: RETURN RESULT IN P2
00400 ENTRY CSL3
00450 ;GET VALUE OF FIRST PARAMETER
00500 CSL3:
0000’ 7E 00600 MoV A,M
0001? 23 00700 INX H
0002' 66 00800 MOV H,M
0003 6F 00900 MOV L,A
01000 ; SHIFT COUNT
0004’ 06 03 01100 MVI B,3
0006" AF 01200 LOOP: XRA A
01300 ; SHIFT LEFT
0007 29 01400 DAD H
01500 ; ROTATE IN CY BIT
0008" 17 01600 RAL
0009’ 85 01700 ADD L
000A' 6F 01800 MOV L,A
01900 ;DECREMENT COUNT
000B' 05 02000 DCR B
02100 ;ONE MORE TIME
gooc! C2 0006’ 02200 JINZ LOOP
000F' EB 02300 XCHG
02400 ; SAVE RESULT IN SECOND PARAMETER
0010' 73 02500 MOV M,E
0011? 23 02600 INX H
0012 72 02700 MOV M,D
0013! c9 02800 RET
02900 END
MACB0 3.2 PAGE S
CSL3 0000I' LOOP 0006’

No Fatal error(s)

Microsoft Utility Software Page 32

1.9 MACRO~B0 Errors

MACRO-80 errors are indicated by a one-character
flag in column one of +the listing file. If a
listing file is not being printed on the terminal,
each erroneous line is also printed or displaved on
the terminal. Below is a 1list of +the MACRO-80
Error Codes:

A Argument error
Arcument to pseudo-op is not in correct format
or is out of range (.PAGE 7; LRADIX 1;

PUBLIC 1; STAX H; MOV M,M; IRX C).

C Conditicnal nesting error
ELSE without IF, ENDIF without IF, two ELSEs
on one IF.

D Double Defired symbol
Reference to a symbol which is multiply
defined.

E External error
Use of an external illegal in context (e.g.,

FOO SET NAME##; MVI A,2-NAME:#).

M Multiply Defined symbol
Definition of a symbol which is multiply

defined.

N Number error
Error in a number, usually a bad digit (e.g.,
8Q) .

0 Bad opcocde or objectionable syntax
ENDM, LOCAL outside a block; SET, EQU or
MACRO without a name; bad syntax in an opcode
(MOV A:); or bad syntax in an expression
(mismatched parenthesis, guoies, consecutive

operators, etc.).

P Phase error
Value of a label or EQU name is different on
pass 2.

Q Questicnable
Usually means a line is not terminated
properly. This is a warning error (e.g. MOV
A, B,).

R Relocation
Illegal use of relocation in expression, such
as abs-rel. Data, code and COMMON areas are

relocatable.

Microsoft Utility Software Page 33

U Undefined symbol
A symbol referenced in an expression 1s not
defined. (For certain pseudo-ops, a V error

is printed on pass 1 and a U on pass 2.)

v Value error
On pass 1 a pseudo-op which must have its
value known on pass 1 (e.g., .RADIX, .PAGE,
DS, IF, IFE, etc.), has a value which 1is
undefined. If the symbol is defined later in
the program, a U error will not appear on the
pass 2 listing.

Error Messages:

'No end statement encountered on input file'
No END statement: either it is missing or it
is not parsed due to being in a false
conditional, unterminated IRP/IRPC/REPT block
or terminated macro.

'Unterminated conditional'’
At least one conditional 1is unterminated at
the end of the file.

'Unterminated REPT/IRP/IRPC/MACRO’
At least one block is unterminated.

[xx] ([No] Fatal error(s) [,xx warnings]

The number of fatal errors and warnings. The
message is 1listed on the CRT and in the list
file.

1.10 Compatibility with Other Assemblers

The $EJECT and $TITLE controls are provided for
compatability with INTEL's ISIS assembler. The
dollar sign must appear in column 1 only if spaces
or tabs separate the dollar sign from the control
word. The control

$EJECT

is the same as the MACRO-80 PAGE pseudo-op.
The control

$TITLE ('text')

is the same as the MACRO-80 SUBTTL <text>
pseudo-op.

The INTEL operands PAGE and INPAGE generate Q
errors when wused with the MACRO-80 CSEG or DSEG

Microsoft Utility Software Page 34

pseudo-ops. These eriors are warnings; the
assembler ignores the operands.

When MACRO-80 1is entered, the default £for the
origin 1is Code Relative 0. With the INTEL ISIS
assembler, the default is Absolute 0.

With MACRO-80, the dollar sign (§) is a defined
constant that indicates the value of the location
counter at the start of the statement. Other
assemblers may use a decimal point or an asterisk.
Other constants are defined by MACRO-80 to have the
following values:

A=7 B=0 C= 1 D=
H=4 L=5 M=6 SP=6 PSW
1.11 Format of Listings

On each page of a MACRO-80 listing, the first two
lines have the form:

[TITLE text) MAC80 3.2 PAGE x[-y]
[SUBTTL text]

where:

1. TITLE text is the text supplied with the TITLE

pseudo-op, 1if one was given in the source

program.

2. x 1is the major page number, which is
incremented only when a form feed 1is
encountered in the source file. (When using

Microsoft's EDIT-80 text editor, a form feed is
inserted whenever a page marx is done.) When
the symbol table is being printed, x = 'S'.

3. y is the minor page numcer, which is
incremented whenever the .PRGE pseudo-oOp 1S
encountered in the source file. or whenever the
current page size has been filled.

4. SUBTTL text 1is the text suzclied with the
SUBTTL pseudo-op, if one was given 1in the
source program.

Next, a blank line is printed, followed by the
first line of output.

A line of output on a MACRO-80 1listing has the
following form:

[crf#) [error] locim XX XXX oo source

Microsoft Utility Software Page 35

If cross reference information is being output, the
first item on the 1line is the cross reference
number, followed by a tab.

A one-letter error code followed by a space appears
next on the 1line, if the line contains an error.
If there is no error, a space is printed. If there
is no cross reference number, the error code column
is the first column on the listing.

The value of the location counter appears next on
the line. It is a 4-digit hexadecimal number of
6-digit octal number, depending on whether the -0
or -H switch was given in the MACRO-80 command
string.

The character at the end of +the 1location counter
value is the mode indicator. It will be one of the
following symbols:

' Code Relative
Data Relative

! COMMON Relative
<space> Absolute
* External

Next, three spaces are printed followed by the
assembled code. One-byte values are followed by a
space. Two-byte values are followed by a mode
indicator. Two~byte values are printed in the
opposite order they are stored in, i.e., the high
order byte is printed first. Externals are either
the offset or the value of the pointer to the next
External in the chain.

The remainder of the 1line contains the 1line of
source code, as it was input.

1.11.1 Symbol Table Listing

In the symbol table listing, all the macro names in
the program are listed alphabetically, followed by
all the symbols in the program, listed
alphabetically. After each symbol, a tab is
printed, followed by the value of the symbol. If
the symbol is Public, an I is printed immediately
after the value. The next character printed will
be one of the following:

Microsoft Utility Software Page 36

U Undefined symbol,

cC COMMON block name. (The "value" of the
COMMON block is its length (number of
bytes) in hexadecimal or octal.)

* External symbol.

<space> Absolute value.

! Program Relative value.

Data Relative value.

COMMON Relative value,.

1.12 Cross Reference Facility

The Cross Reference Facility is invoked by typing
CREF80 at TRSDOS command level. In order to
generate a cross reference listing, the assembler
must output a special listing file with embedded
control characters. The MACRO-80 command string
tells the assembler to output this special listing
file. (See Section 1.5.26 for the .CREF and .XCREF
pseudo~ops.) =-C 1is the cross reference switch.
When the -C switch is encountered in a MACRO-80
command string, the assembler opens a /CRF file
instead of a /LST file.

Examples:

*=TEST-C Assemble file TZST/MAC and
create cbject £f£ile TEST/REL
and cross reference file
TEST/CRF.

*T ,U=TEST-C Assemble file TEST/MAC and
create object file T/REL
and cross reference file
U/CRF.

When the assembler is finished, it is necessary to
call the cross reference facility by typing CREF80.
(CREF80 is on diskette #1) CREF80 command format is:

*listing file=source file

The default extension for the source file is /CRF,
the -L switch is ignored, and any other switch will
cause an error message to be sent to the terminal.
Possible command strings are:

Microsoft Utility Software Page 37

*=TEST Examine file TEST/CRF and
generate a cross reference
listing file TEST/LST.

*T=TEST Examine file TEST/CRF and
generate a cross reference
listing file T/LST.

Cross reference listing files differ from ordinary
listing files in that:

1.

2.

Each source statement is numbered with a cross
reference number.

At the end of the 1listing, variable names
appear in alphabetic order along with the
numbers of the 1lines on which they are
referenced or defined. Line numbers on which
the symbol is defined are flagged with '#'.

Microsoft Utility Software Page 38

SECTION 2

LINK-80 Linking Loader

The LINK-80 Linking Loader takes the relocatable object
files generated by the FORTRAN compiler and MACRO-80
assembler and loads them into memory in a form that can be
executed. In addition, LINK-80 automatically searches the
system library (FORLIB) and loads the 1library routines
needed to satisfy any undefined global references (i.e.,
calls generated by the compiled program to subroutines in
the system library).

LINK-80 provides the user with several loading options.
Programs may be loaded at user-specified locations, and
program areas and data areas may be separated in memory. A
memory image of the executable file produced by LINK-80 can
be written to disk. The default extension for the name of
the executable file is /CMD.

2.1 Running LINK-80

When you give TRSDOS the command

L8O
(diskette #2 must be in the diskx drive), you are
running the LINX-80 1linking loader. When the

loader is ready to accept commancds, it prompts the
user with an asterisk. The loader will exit back
to TRSDOS after & comman¢ containing an E or G
switch (see Section 2.1.1), or after a <break> is
done at command level.

Command lines are also supported by LINK-80.

2.1.1 LINK~-80 Commands -

A command to LINK-80 consists c¢f a string of
filenames and/or switches. The command format is:

[filenamel1] [~switchl] [,filename2] [~switch2]...

All filenames must be in TRSDOS filename format.
After LINK-80 receives the command, it will load or
search (see the S switch) the specified files.

Then it will list all the symbols that remained
undefined, with each followed by an asterisk.

Microsoft Utility Software Page 39

Example:
- *MAIN
DATA 5200 5300
SUBR1* (SUBR1 is undefined)
DATA 5200 5300

*SUBR1
*~-G (Starts Execution ~ see below)

Typically, to execute a FORTRAN program and
subroutines, the wuser types the list of filenames
followed by -G (begin execution). Before execution
begins, LINK-80 will always search the system
library (FORLIB/REL) to satisfy any unresolved
external references. If you wish to first search
libraries of your own, append the filenames that
are followed by =S to the end of the loader command
string.

2.1.2 LINK-80 Switches

A number of switches may be given 1in the LINK-80
command string to specify actions affecting the
loading process. Each switch must be preceded by a
dash (=). These switches are:

Switch Action

R:s&f(fsq‘.t) Reset. Put loader back in its

initial state. Use =R 1if you
loaded the wrong file by mistake
and want to restart. ~-R takes

effect as soon as it is encountered
in a command string.

E or E:Name Exit LINK-80 and return to the~
Operating System. The system
library will be searched on the
current dsk to satisfy any existing
undefined globals. The optional
form E:Name (where Name is a global
symbol previously defined in one of
the modules) wuses Name for the
start address of the program. Use
-E to load a program and exit back
to the monitor.

G or G:Name Start execution of the program as
soon as the current command line
has been interpreted. The system

Microsoft Utility Software Page 40

P and D

library will be searched on the
current disk to satisfy any
existing undefined glcbals. Before
execution actually begins, LINK-B80
prints two numbers and a BEGIN
EXECUTION message. The two numbers
are the start address and the
address of the next available byte.
The optional form G:Name (where
Name is a global symbol previously
defined in one of the modules) uses
Name for the start address of the
program,

If a <filename>-N is specified, the
program will be saved on disk under
the selected name (with a default
extension of CMD) when a -E or -G
is done.

-P and -D allow the origin(s) to be

set for the next program loaded.
-P and -D take effect when seen
(not deferred), and they have no

effect on programs already loadecd.

The form is -P:<addéress> or

ll

~-D:<address>, wnere <address> is
the desired origin in the current
typeout racix. fCefault radix is
hexadecimal. -0 sets radix to
octal; -H to hex.) LINX-80 does a
default -P:<link ozigin> (i.e.,
5200).

If no -D is given, data areas are
loaded before program areas for
each module. If a =D is given, all
Data and Common areas are loaded
starting at the data origin and the
program area at the program origin.
Example:

*-P:200,F0D

Data 200 300
*-R

*-P:200 ~D:400,7rC0O
Data 400 480
Program 200 2890

List the origin and end cf the pro-
gram and data area and all
undefined globals as scon as the
current command line has been
interpreted. The program informa-

Microsoft Utility Software Page 41

tion is only printed if a -D has
been done. Otherwise, the program
is stored in the data area.

M List the origin and end of the pro-
gram and data area, all defined
globals and their values, and all
undefined globals followed by an

asterisk. The program information
is only printed if a -D has been
done. Otherwise, the program is

stored in the data area.

S Search the filename immediately
preceding the =S in the command
string to satisfy any undefined
globals.

Examples:

*~M List all globals

*MYPROG, SUBROT ,MYLIB-S
Load MYPROG.REL and SUBROT.REL and
then search MYLIB,REL to satisfy
any remaining undefined globals.

*-G Begin execution of main program

2.2 Sample Link

DOS READY

L80

*EXAMPL ,EXMPL1-G
DATA 5200 52AC
(5200 52AC]

[BEGIN EXECUTION]

1792 14336
14336 -16383
-16383 14
14 112

112 896

DOS READY

Microsoft Utility Software Page 42

2.3 Format of LTIHK Compatible Object Files

NOTE

Section 2.3 is reference material for users
who wish to know the load format of LINK-80
relocatable object files, Most users will
want +to0 skip this section, 2s it does not
contain material necessary to the operation
of the package.

LINK-compatible object files consist of a bit

stream. Individual fields within the bit stream
are not aligned on byte boundaries, except as noted
below. Use cf a bit stream for relocatable object

files keeps the size of object files to a minimum,
thereby decreasing the number cf disk reads/writes.

There are two basic types of load items: Absolute
and Relocatable,. The first bit of an item
indicates one of these two types. If the first bit
is a 0, the following 8 bits are loaded as an
absolute byte. If the first bit is a 1, the next 2
bits are usad to indicate one of four types ol
relocatable items:

00 Special LINK item (see below),

01 Program Relative, Load the following 16
bits after adding the current Program
base.

10 Data Relative. Load the following 16
bits after adding the current Data base.

11 Common Relative. Load the following 16
bits after adding the current Common
base. -

Special LINK items consist of the bit stream 100
followed by:

a four-bit control field

an optional A field consisting
of a two-bit address type that
is the same as the two-bit field
above exczspt 0C specifies
absolute address

an optional B field consisting

Microsoft Utility Software Page 43

of 3 bits that give a symbol
length and up to 8 bits for
each character of the symbol

A general representation of a special LINK item is:

1 00 xxxx yy nn zzz + characters of symbol name
A field B field

XXXX Four-bit control field (0-15 below)

Yy Two-bit address type field

nn Sixteen-bit value

zzz Three-bit symbol length field

The following special types have a B-field only:

Entry symbol (name for search)
Select COMMON block

Program name

Request library search
Reserved for future expansion

=W N O

The following special LINK items have both an A
field and a B field:

5 Define COMMON size

6 Chain external (A is head of address chain,
B is name of external symbol)

7 Define entry point (A is address, B is name)

8 Reserved for future expansion

The following special LINK items have an A field

only:

9 External + offset. The A value will
be added to the two bytes starting
at the current location counter
immediately before execution.

10 Define size of Data area (A is size)

11 Set loading location counter to A

12 Chain address. A is head of chain,
replace all entries in chain with current
location counter.

The last entry in the chain has an
address field of absolute zero.

13 Define program size (A is size)

14 End program (forces to byte boundary)

The following special Link item has neither an A nor
a B field:

15 End file

Microsoft Utility Software Page 44

2.4 LINK-80 Error Messages

LINK-80 has the following error messages:

?No Start Address A -G switch was issued,
but no main program
had been loaced,

?Loading Error The last f£ile given for input
was not & pr:perl3 formatted
LINK~80 obiect file

?0ut of Memory Not enough memory to load
programe.

?Command Error Unrecognizable LINK-80
command .

?<file> Not Found <file>, as given in the command

string, dié not exist,

$2nd COMMON Larger /XXXXX¥/
The first definition of
OMMON block /XXXXXX/ was not
the largest definition. Re-
order mcdule loading seguence
or change COMMON block
definitions.

$Mult. Def, Global YYYYYY
More than one definition for
the global (internal) symbol
YYYYYY was encountered during
the loading process,

$0verlaying [Program | Area | ,Start = xxXxx]
Data PUbllv = <symbol name> (Xxxx)
;External = <symbol nawe>nxxrx)J

A ~-D or -P will cause already
loaded data to be destroyed.

?Intersecting [ongramT Area
Data |

The program and cata area
intersect and an address oOr
external chain entry is in
thig intersection. The
final value cannot be con-
verted to & current value
since it is in the area
intersection,

Microsoft Utility Software Page 45

?Start Symbol - <name> - Undefined
After a -E: or -G: 1s given,
the symbol specified was not
defined.

Origin [Above] Loader Memory, Move Anyway (Y or N)?
Below

After a -E or -G was given,
either the data or program
area has an origin or top
which lies outside loader
memory (i.e., loader origin
to top of memory). If a
Y <cr> is given, LINK-80
will move the area and con-
tinue. If anything else is
given, LINK-80 will exit.
In either case, if a =N was
given, the image will already
have been saved.

?Can't Save Object File
A disk error occurred when
the file was being saved.

2.5 Program Break Information

LINK-80 stores the address of the first free
location in a global symbol called $MEMRY if that
symbol has been defined by a program loaded.
$MEMRY is set to the top of the data area +1.

NOTE

If -D is given and the data origin is less
than the program area, the user must be
sure there 1s enough room to keep the
program from being destroyed. This 1is
particularly true with the disk driver for
FORTRAN-80 which wuses $MEMRY to allocate
disk buffers and FCB's.

[Intentionally Left Blank]

Scanned by Ira Goldklang - www.trs-80.com

Microsoft Utility Software

.8080
.COMMENT
CCREF
.DEPHASE .
JLALL . . .

JLIST
.PAGE . . .

.PHASE
CPRINTX
.RADIX .
.REQUEST
.SALL . .
JXALL . .
.XCREF .
.XLIST .
.280 . .

a & & & 4 &
. . L .
.
L] L] . L] []

Absolute memory . .
Arithmetic operators
ASEG L L] . - - L] L

Block pseudo ops .

Character constants
Code Relative . . .
Comments
COMMON o o & & o @
Conditionals . . .

Cross reference facili

CSEG . . « ¢ o « o

Data Relative . . .
Define Byte
Define Character .
Define Origin . . .
Define Space . .
Define Word
Device names , . .
DSEG . & o« « o «

EDIT-80
ELSE
END .
ENDIF
ENDM
ENTRY
EQU . ¢« ¢« ¢« & o o
Error codes
Error messages . .
EXITM . . « « « o« o
EXT . & & ¢« o« « « &
Externals
EXTRN « ¢« ¢ o« o o

. - . - .
[} (] . . . L]
.
. L] L] .]
(]
. .
. .] - .

t

- L] L] . . L]

Y

L] L L L] []

- L] [] L] L]

20
19
22
24
22
22
34
24
19
10,
20
22
22
22
22
20

12,
11
12,

24

10
15,
9
12,
21
7,
12,

12,
9,
15
18
16
16
7
12,

8,
21
16

21-

24,
17

23-

14,

22,
15,

16,
15

16,

34

22
28

17-18

32,
33,
28
17
13,
17

35
44

17,

24, 3
23=2

35-36
23,

22-2

23,

32,

5

4,

34

4,

34

35

Page 47

35-36

35

IFF . .
IFNB .
IFT . .
INTEL .
IRP . .

Keyboard

Listings
LOCAL . .

« & = @ e @ . @ e e+ & * @

*® ® * * * 2 ® * 2 e e " @

Logical operators

MACRO . .

Macro operator

Modes ., .
NAME . .

Operators
ORG . ., .

PAGE . .
Printer .
Program
PUBLIC .

REPT ., .
SET L] L L]

Strings .
SUBTTL .

Relati

Symbol tabie'

TITLE . .

Video display

ve

.

" e @

* & ° & = LI]

L] L] L] L]

. L] . L] - - . .

L] - L] .

s ® 8 & ® " o @ L]

«. ® o =

38-39

9
21
21
21
21
21
21
21
21
21

8, 33-34

22,
22,

24,
24,

7

22,
29
11

22,
29
12

17

11
14-16,

18, 33
7
12
9, 17,

22,
18
11
18,
34-35
17-18,

7

34~

24—

33-

26
26

35,

24-28

35

25

34

34

37

23

